题目:统计二进制数中1的个数
写一个函数返回参数二进制中 1 的个数。
比如: 15 0000 1111 4 个 1
以下运用了三种方法
方法一:
思路:采用相邻的两个数据进行按位与运算
举例:
15: 1111
第一次循环:n = 1111 n = n & (n - 1) = 1111 & 1110 = 1110
第二次循环:n = 1110 n = n & (n - 1) = 1110 & 1101 = 1100
第三次循环:n = 1100 n = n & (n - 1) = 1100 & 1011 = 1000
第四次循环:n = 1000 n = n & (n - 1) = 1000 & 0111 = 0000
可以观察到:此种方式,数据的二进制比特位中有几个1,循环就循环几次,而且中间采用了位运算,处理起来比较高效。具体如下:
#include <stdio.h>
int Number_of_1(int n)
{
int count = 0;
while (n)
{
n = n & (n - 1);
count++;
}
return count;
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Number_of_1(n);
printf("1的个数有%d个\n", ret);
return 0;
}
方法二:
思路:
一个int类型的数据,对应的二进制一共有32个比特位,可以采用位运算的方式一位一位的检测,具体如下
其优点:用位操作代替取模和除法运算,效率稍微比较高
缺陷:不论是什么数据,循环都要执行32次 具体如下:
#include <stdio.h>
int Number_of_1(int n)
{
int count = 0;
for (int i = 0; i < 32; i++)
{
if (((n >> i) & 1) == 1)
{
count++;
}
}
return count;
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Number_of_1(n);
printf("1的个数有%d个\n", ret);
return 0;
}
方法三:
思路:
循环进行以下操作,直到n被缩减为0:
1. 用该数据模2,检测其是否能够被2整除
2. 可以:则该数据对应二进制比特位的最低位一定是0,否则是1,如果是1给计数加1
3. 如果n不等于0时,继续1
其缺陷:进行了大量的取模以及除法运算,取模和除法运算的效率本来就比较低。具体如下:
#include <stdio.h>
int Number_of_1(int n)
{
int count = 0;
while (n)
{
if (n % 2 == 1)
{
count++;
n = n / 2;
}
}
return count;
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Number_of_1(n);
printf("1的个数有%d个\n", ret);
return 0;
}