做题还是不自信,不愿做,不愿想,就说这题吧,难吗,不难。今天看到wuyu大牛把这题做了,这心想wuyu都做了,那我也能做出来的。于是乎就AC了。
题意就是一个二维平面上有n个点,每个点有一个权值,现在任意给定以个矩形,求矩形内点的个数及矩形内点的权值和。
把点和查询一起按x轴从小到大排序(这个预处理在这种查询的问题中很是有用)。然后离散化y坐标。
如下图:
对于四个红点围成的矩形,其内部点的个数为 query (y2') -query (y1') +query (y1) -query (y2)。query (y) 为当前比纵坐标比 y小的点个数,所以说可以用树状数组维护并查询。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 20500
#define N 60500
struct node
{
int x,y1,y2,d;
double val;
}a[M+M+N];
struct Node
{
int num;
double sum;
}c[M+M+N],ans[M];
int pos[M+M+N];
int nn;
int lowbit(int x)
{
return x&(-x);
}
void update(int i,double val)
{
while(i<=nn)
{
c[i].num++;
c[i].sum+=val;
i+=lowbit(i);
}
}
Node query(int i)
{
Node temp;
temp.num=0;temp.sum=0;
while(i>0)
{
temp.num+=c[i].num;
temp.sum+=c[i].sum;
i-=lowbit(i);
}
return temp;
}
int bin(int key)
{
int left=1,right=nn;
while(left<=right)
{
int mid=(left+right)>>1;
if(pos[mid]==key)
return mid;
else if(pos[mid]>key)
right=mid-1;
else
left=mid+1;
}
return 0;
}
bool cmp(node a,node b)
{
if(a.x==b.x)
return a.d<b.d;
return a.x<b.x;
}
int main()
{
int n,m,i,j,k;
int l,r,y1,y2;
while(scanf("%d%d",&n,&m)!=EOF)
{
k=0;
for(i=0;i<n;i++)
{
scanf("%d%d%lf",&a[i].x,&a[i].y1,&a[i].val);
a[i].d=0;
pos[k++]=a[i].y1;
}
for(j=1;j<=m;j++,i+=2)
{
scanf("%d%d%d%d",&a[i].x,&y1,&a[i+1].x,&y2);
pos[k++]=y1;pos[k++]=y2;
a[i].d=-j;a[i+1].d=j;
a[i].y1=y1;a[i].y2=y2;
a[i+1].y1=y1;a[i+1].y2=y2;
}
sort(a,a+m+m+n,cmp);
sort(pos,pos+k);
for(i=0,j=1;i<k;i++)
if(i==0||pos[i]!=pos[i-1])
pos[j++]=pos[i];
nn=j-1;
memset(ans,0,sizeof(ans));
memset(c,0,sizeof(c));
for(i=0;i<m+m+n;i++)
{
if(a[i].d==0)
{
l=bin(a[i].y1);
update(l,a[i].val);
}
else
{
l=bin(a[i].y1);
r=bin(a[i].y2);
Node temp1=query(l-1);
Node temp2=query(r);
if(a[i].d<0)
{
ans[-a[i].d].num+=temp1.num-temp2.num;
ans[-a[i].d].sum+=temp1.sum-temp2.sum;
}
else
{
ans[a[i].d].num+=temp2.num-temp1.num;
ans[a[i].d].sum+=temp2.sum-temp1.sum;
}
}
}
for(i=1;i<=m;i++)
if(ans[i].num==0)
printf("0.00/0\n");
else
printf("%.2lf/%d\n",ans[i].sum,ans[i].num);
}
return 0;
}