hdu 3890 树状数组

做题还是不自信,不愿做,不愿想,就说这题吧,难吗,不难。今天看到wuyu大牛把这题做了,这心想wuyu都做了,那我也能做出来的。于是乎就AC了。

题意就是一个二维平面上有n个点,每个点有一个权值,现在任意给定以个矩形,求矩形内点的个数及矩形内点的权值和。

把点和查询一起按x轴从小到大排序(这个预处理在这种查询的问题中很是有用)。然后离散化y坐标。

                                                   如下图:

                                                对于四个红点围成的矩形,其内部点的个数为 query (y2') -query (y1') +query (y1) -query (y2)。query (y) 为当前比纵坐标比 y小的点个数,所以说可以用树状数组维护并查询。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define M 20500
#define N 60500
struct node
{
	int x,y1,y2,d;
	double val;
}a[M+M+N];
struct Node
{
	int num;
	double sum;
}c[M+M+N],ans[M];
int pos[M+M+N];
int nn;
int lowbit(int x)
{
	return x&(-x);
}
void update(int i,double val)
{
	while(i<=nn)
	{
		c[i].num++;
		c[i].sum+=val;
		i+=lowbit(i);
	}
}
Node query(int i)
{
	Node temp;
	temp.num=0;temp.sum=0;
	while(i>0)
	{
		temp.num+=c[i].num;
		temp.sum+=c[i].sum;
		i-=lowbit(i);
	}
	return temp;
}
int bin(int key)
{
	int left=1,right=nn;
	while(left<=right)
	{
		int mid=(left+right)>>1;
		if(pos[mid]==key)
			return mid;
		else if(pos[mid]>key)
			right=mid-1;
		else
			left=mid+1;
	}
	return 0;
}
bool cmp(node a,node b)
{
	if(a.x==b.x)
		return a.d<b.d;
	return a.x<b.x;
}
int main()
{
	int n,m,i,j,k;
	int l,r,y1,y2;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		k=0;
		for(i=0;i<n;i++)
		{
			scanf("%d%d%lf",&a[i].x,&a[i].y1,&a[i].val);
			a[i].d=0;
			pos[k++]=a[i].y1;
		}
		for(j=1;j<=m;j++,i+=2)
		{
			scanf("%d%d%d%d",&a[i].x,&y1,&a[i+1].x,&y2);
			pos[k++]=y1;pos[k++]=y2;
			a[i].d=-j;a[i+1].d=j;
			a[i].y1=y1;a[i].y2=y2;
			a[i+1].y1=y1;a[i+1].y2=y2;
		}
		sort(a,a+m+m+n,cmp);
		sort(pos,pos+k);
		for(i=0,j=1;i<k;i++)
			if(i==0||pos[i]!=pos[i-1])
				pos[j++]=pos[i];
		nn=j-1;
		memset(ans,0,sizeof(ans));
		memset(c,0,sizeof(c));
		for(i=0;i<m+m+n;i++)
		{
			if(a[i].d==0)
			{
				l=bin(a[i].y1);
				update(l,a[i].val);
			}
			else
			{
				l=bin(a[i].y1);
				r=bin(a[i].y2);
				Node temp1=query(l-1);
				Node temp2=query(r);
				if(a[i].d<0)
				{
					ans[-a[i].d].num+=temp1.num-temp2.num;
					ans[-a[i].d].sum+=temp1.sum-temp2.sum;
				}
				else
				{
					ans[a[i].d].num+=temp2.num-temp1.num;
					ans[a[i].d].sum+=temp2.sum-temp1.sum;
				}
			}
		}
		for(i=1;i<=m;i++)
			if(ans[i].num==0)
				printf("0.00/0\n");
			else
				printf("%.2lf/%d\n",ans[i].sum,ans[i].num);
	}
	return 0;
}


			


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值