- 博客(19)
- 收藏
- 关注
原创 论文阅读-CVPR2022-TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing
论文阅读-CVPR2022-TVConv: Efficient Translation Variant Convolution for Layout-aware Visual Processing引文整理MotivationTE问题两种方差贡献MethedologyTVConv流程结果实验分析①TVConv对于数据增强够鲁棒吗?②如何初始化Affinity Maps?③过参数化Weight-Generate模块有用吗?④既然TVConv可以即插即用,那么插在哪好?总结缺点Title: TVConv: Ef
2022-05-20 10:47:31 2681
原创 TVConv引文整理-Per-pixel动态卷积
引文范围Per-pixel动态卷积:[3, 20, 22, 37, 45, 49, 59]具体内容引文3一句话总结: 可微分的区域分组per-pixel动态卷积实验结论: 1. 小模型收益更高;2. 区域越多收益越高Title: [CVPR 2021] Dynamic Region-Aware ConvolutionPaper: https://arxiv.org/abs/2003.12243Code: <unofficial!!> | https://github.com/sh
2022-05-20 10:43:35 811
原创 TVConv引文整理-Per-image动态卷积
引文范围Per-image动态卷积: [6, 19, 24, 53, 57]具体内容引文6Title: [CVPR 2020] Dynamic convolution: Attention over convolution kernels.Paper: https://arxiv.org/abs/1912.03458v2Code: <unofficial!!> | https://github.com/kaijieshi7/Dynamic-convolution-Pytorch整
2022-05-20 10:42:31 431
原创 学习笔记-图论-Prim算法的两种描述
目录简介描述一:集合版本具体内容算法例子描述二:权值矩阵版本具体内容算法例子总结胡言乱语简介在前几个学期学习离散数学和数据结构的时候学习过图论的基本知识,这个学期学通信网络基础时候把一些算法又学了一遍。其中Prim算法的描述稍有差异,以下对这两种描述进行简要介绍,并说明其等价性。描述一:集合版本数据结构课程中多采用此种描述。例子引自:知乎-Prim算法——最小生成树。具体内容用两个集合A{}, B{}分别表示找到的点集和未找到的点集;以A中的点为起点a,在B中找一个点为终点B,这两个点构成
2022-04-10 20:50:45 792
原创 论文笔记-粗读-8.22~8.29
论文笔记-粗读-8.22~01-Learning Structured Sparsity in Deep Neural Networks文章:代码:https://github.com/wenwei202/caffe/tree/scnn文章采用结构化稀疏的方法对不同的结构进行修剪。最终将20层的ResNet修剪至18层,同时精度由92.25%提升至92.60%。filters和channels之间存在冗余[11];filters为什么一定是正方形呢?深度网络有时因为梯度爆炸和梯度消失的问题
2021-08-29 13:51:27 506
原创 论文笔记-精读-8.24-Pruning neural networks without any data by iteratively conserving synaptic flow
原文:代码:总结解决的问题:现有的gradient-based的剪枝方法在初始化时会遭遇layer-collapse的问题——即导致过早的剪去一整个layer使得网络模型无法训练的现象;彩票假设提出后,对模型到底是否需要pre-trained提出了质疑,很自然有这样一个问题:能不能不训练,甚至不借助于任何数据输入,而直接地detect the wining lottery ticket? 对此目前没有有效的算法;方法的新颖之处:不依赖于训练数据就能够识别wining ticket;
2021-08-24 12:39:46 1102
原创 论文笔记-精读-8.22-Manifold Regularized Dynamic Network Pruning
论文笔记-精读-8.2-Manifold Regularized Dynamic Network Pruning总结关于本篇文所解决问题的总结写在前面,方便一些朋友阅读,也方便自己从具体的方法中跳脱出来,高屋建瓴、理清思路。要解决的问题&解决的情况问题主要是:static prune达不到高的剪枝率,文章这是因为他们没有充分发掘输入中的信息;方法的优缺点直觉上,这个基于交叉熵的复杂度评估必须要等到接近收敛才能有比较好的近似,否则一开始,所有实例都拟合得不好,得到的复杂度信息肯
2021-08-22 08:23:37 1603
原创 机器学习-决策树(基于Python实现)
机器学习-决策树(基于Python实现)目录机器学习-决策树(基于Python实现)概述设计代码设计方案ID3C4.5CART其他参考资料概述决策树(decision tree)是机器学习中一种非常重要的模型,主要的策略是分而治之。决策树一般被用于分类问题(分类问题即对应离散的分布律,可以直观地求对应的其信息熵),但有时也可用于回归任务(如CART回归树)。单变量决策树(univariate decision tree)的分类边界总是垂直于坐标轴的(如:敲声=清脆?, 密度<3.0560?)
2021-08-03 20:02:57 1304
翻译 Pytorch官方引导02-TENSORS
Pytorch官方引导02-TENSORS张量(Tensor),是一种特殊化的数据结构,与数组和矩阵非常相似。在Pytorch中,我们使用张量来编码一个模型的输入输出,以及模型参数。import torchimport numpy as np初始化张量初始化张量的方式有多种,示例如下:直接来源于数据张量能够直接从数据创建,其数据类型是自动推断的:data = [[1, 2], [3, 4]]x_data = torch.tensor(data)来源于numpy数组张量也能够从num
2021-07-07 22:32:47 198
翻译 Pytorch官方引导01-QUICKSART
Pytorch官方引导01-QUICKSART目前在做一个深度学习加速的项目,基础知识还不太过关,于是先从炼丹开始学起,貌似使用jupyter和markdown能够一边跑演示代码一边记笔记,正好还可以上传到CSDN便于复习,感觉这对刚上手做深度学习的人来说还是非常有帮助的,于是从现在开始尝试一下,看效果如何。Working with data数据工作常用两个源语:Dataset----------包括 样本samples 和 标签labelsDataLoader-----在Dataset基础上包
2021-07-06 22:48:48 219
原创 FPGA课程设计-基于EGO1实验板和树莓派4B的网络同步时钟(UART编程实现)
FPGA课程设计-基于EGO1实验板和树莓派4B的网络同步时钟(UART编程实现)数电的课程设计,要求采用FPGA设计一个电子日历,于是突发奇想设计了有一个网络同步时间的功能,大体上就是在树莓派端用python编写程序(serial库调用串口ttyAMA1),然后在FPGA端设计一个UART的RX模块即可。具体设计思路和代码稍后上传…...
2021-06-20 20:27:40 2330 3
原创 剪枝论文笔记-基于最小化重构误差的方法(1)-ThiNet
论文题目:ThiNet: A Filter Level Pruning Method for Deep Nerual Network Compression原文链接:https://arxiv.org/pdf/1707.06342.pdf作者:Jian-Hao luo, Jianxin Wu, Weiyao Lian–yangtao2019, 2021.5.21
2021-05-21 15:32:33 905
原创 BP算法的数学基础-链式求导法则中的细节问题推敲
这里写自定义目录标题BP算法四个基本方程链式法则一、完备表达如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入BP算法众所周知,深度神经网络的一大精髓在于BP算法。每个Batch的前馈计算完成后,采用BP算法可以很方便地求得梯度,或者说,损失函数EEE对于任一个权重wi,
2021-04-21 20:38:27 720
原创 Python爬虫-获得某一链接下的所有超链接
Python爬虫-获得某一链接下的所有超链接目录Python爬虫-获得某一链接下的所有超链接用到的库具体实现:1. 获得某页面的html内容3.获得某html下的所有超链接4.筛除结果中非链接的元素主程序大功告成!用到的库Beautifulsoup4、requests、re模块import requests as rqfrom bs4 import BeautifulSoup as bsimport re具体实现:1. 获得某页面的html内容要获得某一个页面的html,没什么好说,直接
2020-11-08 13:12:19 9774 1
原创 清华大学邓俊辉-数据结构MOOC笔记-二叉树基于C++的具体实现
二叉树基于C++的具体实现二叉树的基本组成单位:Binary Node----BinNode基本成员:数据域:data引用域:lChild, parent, rChild其他指标:hieght, npl, color笼统的称每个节点占用的空间为一个位置。则可以定义:#define BinNodePosi(T) BinNode<T>*函数接口:size()用于统计节点后代总数,或称其子树的规模。insertAsLC(), insertAsRC()分别用于擦汗如当前节点的
2020-11-04 19:52:44 357
原创 清华大学邓俊辉-数据结构MOOC笔记-树的概念及逻辑表示
清华大学邓俊辉-数据结构MOOC笔记-树的概念有关概念:与图论略有不同,数据结构中的树:1.需要为每一颗树指定一个特殊的顶点,作为“根”(root),对应rooted-tree;vertex与node,关系紧密但略有不同,每一个vertex都将以node的形式在计算机中被表示和实现。child孩子, sibling兄弟(需要定义长幼次序), parent父亲degree(出)度,即任意节点的孩子的数目。任何一颗数中顶点数目n和边e的数目同阶,并可以递归证明:故以后可以使用n为参照,来度量相
2020-11-04 00:17:03 733
原创 C语言-对多行文本的排序程序
目录对多行文本的排序程序问题分解1.读取部分2.排序部分3.输出部分4.主程序总结对多行文本的排序程序这里对Brian W. Kernighan和Dennis M. Richie的C语言经典教材The C Programming Language (Second Edition)中第五章(P93~P95)用于讲解指针数组的一段示例代码进行解读。源程序的主要功能即:对长度不一的多个文本行按“字典顺序”进行排序(文本由用户输入到控制台),并将排序后的多行文本行再输出。这里需要注意一个细节问题(实际上是主
2020-07-20 14:59:21 1741
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人