机器学习-决策树(基于Python实现)

机器学习-决策树(基于Python实现)

概述

决策树(decision tree)是机器学习中一种非常重要的模型,主要的策略是分而治之。

决策树一般被用于分类问题(分类问题即对应离散的分布律,可以直观地求对应的其信息熵),但有时也可用于回归任务(如CART回归树)。

单变量决策树(univariate decision tree)的分类边界总是垂直于坐标轴的(如:敲声=清脆?, 密度<3.0560?),这样的分类边界可以容易地化为有限个,对于连续变量,将出现的值划分到不同bins即可。当边界形状复杂时,往往需要采用多变量决策树(multivariate decision tree),每次将采用特征的线性组合,而不是仅仅采用某一个最佳特征作为划分依据。

这里的理论和算法部分基于西瓜书第四章,实现采用的是python和常用的矩阵计算、数据分析库: numpy, pandas, matplotlib, pytorch等。

设计代码

https://gitee.com/yangtao2019yt/pytorch_learning/tree/master/machine_learning_by_torch/decision_tree

设计方案

ID3

ID3_tree_on_xigua2d0

C4.5

C4d5_tree_on_xigua2d0

CART

CART_tree_on_xigua2d0

其他

asd

参考资料

[1] 机器学习, 清华大学出版社, 周志华,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值