TVConv引文整理-Per-pixel动态卷积

本文总结了CVPR 2021年几项关键动态卷积技术,如DRConv、Laconv、Involution、Pixel-Adaptive Convolution等,强调小模型和区域敏感性的优势,以及通过分解实现轻量化。核心发现包括在小模型中深度替换的效益和局部自适应策略。

引文范围

Per-pixel动态卷积:[3, 20, 22, 37, 45, 49, 59]

具体内容

引文3

一句话总结: 可微分的区域分组per-pixel动态卷积
实验结论: 1. 小模型收益更高;2. 区域越多收益越高
Title: [CVPR 2021] Dynamic Region-Aware Convolution
Paper: https://arxiv.org/abs/2003.12243
Code: <unofficial!!> | https://github.com/shallowtoil/DRConv-PyTorch
整理:[知乎] | [CVPR 2021] Dynamic Region-Aware Convolution | https://zhuanlan.zhihu.com/p/372120226

引文20

一句话总结:
Title: [arXiv 2021.7] Laconv: Local adaptive convolution for image fusion用于图像融合的局部自适应卷积
Paper: https://arxiv.org/abs/2107.11617v1
Code: None
整理:None

引文22

Title: [CVPR 2021] Involution: Inverting the inherence of convolution for visual recognition
Paper: https://arxiv.org/pdf/2103.06255.pdf
Code: https://github.com/d-li14/involution
整理:[知乎] | CVPR 2021 | 真内卷!Involution:反转卷积的固有性以进行视觉识别 | https://zhuanla

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值