引文范围
Per-pixel动态卷积:[3, 20, 22, 37, 45, 49, 59]
具体内容
引文3
一句话总结: 可微分的区域分组per-pixel动态卷积
实验结论: 1. 小模型收益更高;2. 区域越多收益越高
Title: [CVPR 2021] Dynamic Region-Aware Convolution
Paper: https://arxiv.org/abs/2003.12243
Code: <unofficial!!> | https://github.com/shallowtoil/DRConv-PyTorch
整理:[知乎] | [CVPR 2021] Dynamic Region-Aware Convolution | https://zhuanlan.zhihu.com/p/372120226
引文20
一句话总结:
Title: [arXiv 2021.7] Laconv: Local adaptive convolution for image fusion用于图像融合的局部自适应卷积
Paper: https://arxiv.org/abs/2107.11617v1
Code: None
整理:None
引文22
Title: [CVPR 2021] Involution: Inverting the inherence of convolution for visual recognition
Paper: https://arxiv.org/pdf/2103.06255.pdf
Code: https://github.com/d-li14/involution
整理:[知乎] | CVPR 2021 | 真内卷!Involution:反转卷积的固有性以进行视觉识别 | https://zhuanla

本文总结了CVPR 2021年几项关键动态卷积技术,如DRConv、Laconv、Involution、Pixel-Adaptive Convolution等,强调小模型和区域敏感性的优势,以及通过分解实现轻量化。核心发现包括在小模型中深度替换的效益和局部自适应策略。
最低0.47元/天 解锁文章
3272

被折叠的 条评论
为什么被折叠?



