GSL中的切比雪夫逼近

本文介绍了如何使用切比雪夫级数进行单变量函数的逼近计算。切比雪夫多项式提供了一种在[-1,1]区间上对函数进行正交基展开的方法,用于高效地近似函数。文章详细阐述了切比雪夫级数的定义、创建、计算以及相关的辅助函数,包括级数的评估、微分和积分。此外,还提供了计算绝对误差的功能,便于精度分析。
摘要由CSDN通过智能技术生成

切比雪夫逼近

    本章描述计算单变量函数切比雪夫逼近的函数。切比雪夫逼近是级数f(x)=cnTn(x)的截断,其中切比雪夫多项式Tn(x)=cos(n arccosx)提供了多项式在区间[−1,1]上的正交基,权函数为1/1-x2。前几个切比雪夫多项式是,T0(x) = 1, T1(x) = x, T2(x) = 2x2−1。更多信息,请参阅第22章Abramowitz和Stegun。

    本章描述的函数声明在头文件gsl_chebyshev.h中。

32.1 定义

gsl_cheb_series

    切比雪夫级数的存储结构如下:

typedef struct

{

double * c;          /* coefficients c[0] .. c[order] */

int order;            /* order of expansion */

double a;           /* lower interval point */

double b;           /* upper interval point */

...

} gsl_cheb_series


    在[a, b]范围内用order+ 1项进行逼近,包括系数c[0]。级数是用下面的定义计算的,

这是直接访问系数时需要的。

32.2 创建和计算切比雪夫级数

gsl_cheb_series * gsl_cheb_alloc(const size_t n)

    本函数为一个n阶的切比雪夫级数分配空间,并返回一个指针,指向新建的gsl_cheb_series结构体。

void gsl_cheb_free(gsl_cheb_series * cs)

    本函数释放分配的切比雪夫级数cs的空间。

int gsl_cheb_init(gsl_cheb_series * cs, const gsl_function * f, const double a,

const double b)

    本函数计算函数f在范围(a, b)上的切比雪夫逼近cs到先前指定的阶。切比雪夫逼近的计算是一个O(n2)过程,需要n个函数的计算。

32.3 辅助函数

    以下函数提供了关于现有的切比雪夫级数的信息。

size_t gsl_cheb_order(const gsl_cheb_series * cs)

    本函数返回切比雪夫级数cs的级。

size_t gsl_cheb_size(const gsl_cheb_series * cs)

double * gsl_cheb_coeffs(const gsl_cheb_series * cs)

    这些函数返回切比雪夫系数数组c[]的大小和切比雪夫级数cs在内存中的位置的指针。

32.4 切比雪夫级数计算

double gsl_cheb_eval(const gsl_cheb_series * cs, double x)

    本函数计算在给定点x处的切比雪夫级数cs的值。

int gsl_cheb_eval_err(const gsl_cheb_series * cs, const double x, double * result,

double * abserr)

    本函数计算给定点x处的切比雪夫级数cs,估算级数值在result中,其绝对误差在abserr中。误差估计是根据级数中忽略的第一项进行的。

double gsl_cheb_eval_n(const gsl_cheb_series * cs, size_t order, double x)

    本函数计算在给定点x处的切比雪夫级数cs,直到(至多)给定的级order。

int gsl_cheb_eval_n_err(const gsl_cheb_series * cs, const size_t order,

const double x, double * result, double * abserr)

    本函数计算给定点x处的切比雪夫级数cs,估算级数值在result中,其绝对误差在abserr中,(至多)达到给定的级order。误差估计是根据级数中忽略的第一项进行的。

32.5 微分和积分

下面的函数允许对切比雪夫级数进行微分或积分,得到一个新的切比雪夫级数。请注意,由于忽略了高次项的贡献,对导数级数的估计误差将被低估。

int gsl_cheb_calc_deriv(gsl_cheb_series * deriv, const gsl_cheb_series * cs)

    本函数计算级数cs的导数,将导数系数存储在先前分配的deriv中。两个级数cs和deriv必须按相同的顺序分配内存。

int gsl_cheb_calc_integ(gsl_cheb_series * integ, const gsl_cheb_series * cs)

    本函数计算级数cs的积分,将积分系数存储在先前分配的integ中。两个级数cs和integ必须按相同的顺序分配内存。积分的下限为取值范围a的左端。

比雪夫逼近问题:从一道国台北数学奥林匹克试题谈起 作者:佩捷,林常 编著 出版时间:2013年版 内容简介   本书从一道国台北数学奧林匹克试题谈起,详细介绍了比雪夫逼近问题的相关知识及应用.全书共20章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科的应用。 本书适合数学专业的本科生和研究生以及数学爱好者阅读和收藏。 目录 第0章 引言 第1章 比雪夫小传 第2章什么是逼近 第3章 比雪夫多项式 第4章 比雪夫多项式与方程根的分布 第5章 最佳逼近多项式的特征 第6章 比雪夫多项式的三角形式在几何的应用 6.1 第一型比雪夫多项式 6.2 第二型比雪夫多项式 第7章 比雪夫多项式的三角形式不等式 第8章 比雪夫多项式的拉格朗日形式 第9章 再谈最佳逼近多项式 第10章 最小偏差多项式 第1 1章 高次比雪夫逼近 11.1 一道集训队试题 11.2 n.几.比雪夫定理 第12章 比雪夫多项式与不等式 第13章 比雪夫多项式与马尔可夫定理 13.1 多项式与三角多项式的导数增长的阶 13.2 函数的可微性质的表征 第14章 多元逼近 第15章 多元逼近问题的未解决问题 第16章 非线性比雪夫逼近 第17章 巴拿赫空间比雪夫多项式 第1 8章 FIR数字滤波器设计的比雪夫逼近法 18.1 比雪夫最佳一致逼近原理 18.2 利用比雪夫逼近理论设计FIR数字滤波器 18。3 误差函数置(oJ)的极值特性 第19章 苏格兰咖啡馆的大本子 第20章 逼近的伯恩斯坦猜测 20.1 引言 20.2 高精度计算 20.3 计算伯恩斯坦常数卢的上界 20.4 计算伯恩斯坦常数的下界 20,5 ~{2nE一(.zD)]兰,的理查森外插 20.6 某些未解决的问题 20.7 1x0在[一1,+1]上的有理逼近 附录I 关于非线性比雪夫逼近的几点注记 附录Ⅱ 几个多项式问题 1. 全k次方值蕴涵k次方式 2. 比雪夫多项式引申出的几个问题 3. 二次函数的几个问题 编辑手记
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值