LLama factory接入wandb面板

在这里插入图片描述

https://github.com/hiyouga/LLaMA-Factory/blob/main/README_zh.md

step1:先自己在wandb注册一个账号,拿到key

详见:WandB 简明教程【Weights & Bias】

step2:开始配置

说明!!我是在代码行里运行有问题,所以直接演示网页端

  1. webui起来后,进行配置,wandb是在这里
    在这里插入图片描述
  2. 然后预览命令 会出现一个report_to: all就对了,然后直接运行
llamafactory-cli train \
    --stage sft \
    --do_train True \
    --model_name_or_path {模型路径} \
    --preprocessing_num_workers 16 \
    --finetuning_type lora \
    --template llama3 \
    --flash_attn auto \
    --dataset_dir data \
    --dataset {数据集路径} \
    --cutoff_len 1024 \
    --learning_rate 5e-05 \
    --num_train_epochs 3.0 \
    --max_samples 100000 \
    --per_device_train_batch_size 2 \
    --gradient_accumulation_steps 8 \
    --lr_scheduler_type cosine \
    --max_grad_norm 1.0 \
    --logging_steps 5 \
    --save_steps 100 \
    --warmup_steps 0 \
    --optim adamw_torch \
    --packing False \
    --report_to all \
    --output_dir {输出文件路径} \
    --bf16 True \
    --plot_loss True \
    --ddp_timeout 180000000 \
    --include_num_input_tokens_seen True \
    --lora_rank 8 \
    --lora_alpha 16 \
    --lora_dropout 0 \
    --lora_target all
  1. 运行到最后让你选择w&b使用模式,选2,回车
wandb: Using wandb-core as the SDK backend.  Please refer to https://wandb.me/wandb-core for more information.
wandb: (1) Create a W&B account
wandb: (2) Use an existing W&B account
wandb: (3) Don't visualize my results
wandb: Enter your choice: 2
  1. 输入你在官网拿的的key即可
wandb: You chose 'Use an existing W&B account'
wandb: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)
wandb: You can find your API key in your browser here: https://wandb.ai/authorize
wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit: 
  1. 最后点🚀开头的网页跳转即可
wandb: Tracking run with wandb version 0.19.0
wandb: Run data is saved locally in /wandb/run-20241210_130307-l78hav6r
wandb: Run `wandb offline` to turn off syncing.
wandb: Syncing run train_2024-12-10-12-33-18
wandb: ⭐️ View project at https://wandb.ai/{you_username}/huggingface
wandb: 🚀 View run at https://wandb.ai/{you_username}/huggingface/runs/l78hav6r                                                                                  

在这里插入图片描述

补充:如果要在编辑器里运行,直接把网页端的预览命令粘进去应该是一个效果

YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而高性能,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。  本课程的YOLOv5使用ultralytics/yolov5,在Windows和Ubuntu系统上分别做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 除本课程《YOLOv5实战训练自己的数据集(Windows和Ubuntu演示)》外,本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209 《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284  
### Llama-FactoryWandB的集成 Llama-Factory 是一种用于简化机器学习模型开发过程的工作流工具,而 WandB (Weights & Biases) 则是一个专注于实验跟踪、超参数优化以及团队协作平台的服务。两者可以很好地协同工作来提升项目效率。 当涉及到两者的集成时,在 Llama-Factory 中可以通过配置文件指定使用 WandB 来记录训练日志和指标数据[^1]。这使得开发者能够在不改变原有代码结构的情况下轻松启用强大的可视化功能和支持更复杂的分析需求。 对于具体的实现方式,通常是在初始化阶段引入 `wandb` 库并调用相应的 API 方法完成设置: ```python import wandb # 初始化一个新的WandB运行实例 run = wandb.init(project="my_project", entity="your_entity") config = run.config # 获取当前项目的配置对象 ``` 通过这种方式,每次执行由 Llama-Factory 管理的任务都会自动向关联好的 WandB 实验室上传相关信息,从而实现了无缝衔接的效果[^2]。 ### 对比分析 在比较这两个工具时需要注意的是它们各自的核心优势所在: - **易用性和灵活性**: Llama-Factory 提供了一套完整的解决方案框架,允许用户自定义各种组件;相比之下,WandB 更加专注于提供优秀的用户体验和技术支持服务。 - **社区资源和文档质量**: WandB 拥有庞大的活跃用户群体,并且官方维护着详尽的帮助手册和技术博客文章,这对于新手来说非常友好[^3]。 综上所述,虽然二者定位不同但是却能够相辅相成地服务于同一个目标——加速科研成果产出的同时提高工作效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值