可降级多智能体系统的鲁棒规划技术解析
1 引言
计算机系统在按计划运行时,旨在达成预期目的并达到期望的性能水平。然而,常存在预期条件无法满足的情况,致使无法达到预期性能。在关键任务应用中,如导弹发射,此类事件即为彻底失败;但在多数应用里,系统性能并非二元值,而是有一定范围的变化。对于可降级系统,设计者需实现检测故障和适应变化的机制。
多智能体系统作为计算机系统的一种,常需应对类似问题。其运行环境不断变化,不确定性问题更为突出,因此多智能体系统应具备可降级特性,以适应环境变化并维持可接受的性能水平。多智能体系统的发展为容错技术带来了机遇与挑战,一方面扩展了容错系统的研究,另一方面需要新的容错技术。当前研究多聚焦于处理多智能体环境中的不确定性,但现有方法存在局限性,我们需确保系统实施增强鲁棒性的机制。
2 多智能体系统中性能与可靠性的综合视角
与传统系统相比,多智能体系统在问题解决方面有新视角,其特点对问题解决方式有重要影响:
- 自主性 :智能体自主决策,活动源于自身决定,虽可与其他智能体交互,但决策过程局部化,且多智能体系统本质上是去中心化的。
- 效用的显式推理 :智能体决策基于效用模型,旨在最大化效用,其效用模型可反映团队利益,使智能体具有合作性。
- 不确定性 :智能体在解决问题时需应对多种不确定性,其行动结果不确定,需动态调整行动,因此通信、协调与合作是关键。
这些特性给容错计算与多智能体问题解决的融合带来了挑战。容错机制需通过显式协调与合作来实现,应将可靠性和容错要求纳入效用结构。实际上,可靠性和性能相互依存,可使用综合指标“可执行性”来评估系统,它将可靠性与性能联系起来,使容错技术成为提高系统整体性能和决策的一部分。
3 计算模型
3.1 智能体模型
智能体被视为自主问题解决者,其知识库可分为三部分:
1. 能力 :智能体能够处理的任务列表,它可以本地执行任务或细分问题,底层为本地可执行任务或无法处理的任务。
2. 关系/约束 :任务之间并非独立,可能存在顺序要求或资源竞争。
3. 效用结构 :为每个任务和关系定义效用结构,以指定对智能体效用的影响。
智能体知识库的一个关键特征是不确定性,包括任务或关系的非确定性结果以及缺乏静态知识导致的不确定性。此外,智能体分布式且自主,通常只了解系统的部分信息,且假定智能体能够相互通信、探索、协商和协调,并且是理性的。
3.2 计算模型
多智能体系统由多个联网智能体组成,它们可以是同质或异质的。每个智能体有自己的知识库和效用结构,只能看到系统的部分信息。系统中的任务对应智能体的能力,且有不同的奖励级别,问题解决本质上是一个约束优化问题。根据智能体接收效用的方式,可分为自利型和合作型多智能体系统,本文主要关注合作型系统。
4 底层:去中心化多智能体马尔可夫决策过程(MDP)
此层为合作多智能体问题解决提供形式化基础,使用状态表示将问题解决过程建模为决策过程,并对标准马尔可夫决策过程进行扩展。在该模型中,智能体的局部动作和状态转移可由马尔可夫过程建模,但无局部效用函数,而是有基于全局状态和联合动作的全局效用函数。
智能体对全局状态有部分视图,可通过通信获取其他智能体的局部状态信息。DEC - MDP/POMDP模型虽通用,但未区分智能体的协调活动和领域动作,因此采用将通信决策和领域动作分离的模型,便于建模高层结构和构建近似方法。
在该框架下,可将DEC - MDP策略与智能体规划和协调策略建立联系,局部动作策略对应局部规划过程,通信策略对应协调过程,为研究规划算法和协调机制提供理论基础。
5 中层:近似方法
解决底层决策问题通常计算不可行,但评估启发式策略相对简单。传统多智能体问题解决策略研究常使用任务表示,为了深入了解策略设计,需要将任务级策略转换为状态级策略。
在任务级,使用承诺作为智能体协调的工具。承诺是对特定行动过程的保证,可分为决定承诺和履行承诺两部分。承诺的状态级描述可通过函数F和G来表示,分别对应选择承诺和实现承诺的策略。此外,引入函数v来监测是否需要重新评估承诺,以降低计算复杂度。
承诺具有不确定性,可通过定义统计保证语义和在运行时监测承诺来处理。同时,需要区分系统级策略和单智能体策略,系统级策略基于全局状态空间,而单智能体策略基于局部知识,在设计单智能体策略时需考虑局部视图的限制。
通信承诺对于智能体协调非常重要,可将策略相关信息作为状态信息的附加内容进行通信。通过交换策略信息,智能体可简化推理过程,扩展主观视图。
以下是一个简单的mermaid流程图,展示智能体决策过程:
graph LR
A[观察局部结果] --> B{是否需要通信?}
B -- 是 --> C[进行通信]
B -- 否 --> D[决定局部动作]
C --> D
D --> E[执行动作]
E --> A
6 顶层:容错协调机制
在底层和中层定义了多智能体问题解决的框架和启发式方法,但策略通常复杂,系统规模扩大时需进一步近似方法。此层研究如何开发和使用预定义机制,以提高系统的可扩展性和性能。
6.1 可执行性
可执行性基于系统活动的完成水平,对于有限时间问题,可通过定义完成状态的概率分布来评估系统的可执行性。在效用模型中,可执行性度量可等同于平均期望效用,它是连接承诺和效用度量的关键。
6.2 容错机制
在可执行性模型中,失败指不理想的完成水平。我们主要关注任务故障,它是瞬态、随机且局部的,可通过失败概率描述。处理这些故障的容错技术有:
- 检查点 :在任务持续时间长或包含子任务时,插入检查点并保存结果,失败时可回滚到最近检查点。
- 主备份(PB) :执行主任务时,同时规划备份任务,主任务成功则取消备份任务。
- 主异常(PE) :与主备份类似,但备份任务可采用不同方式解决问题,通常所需努力较少但性能较低。
- 三重模块化冗余(TMR) :并行执行三个相同任务,通过投票程序判断结果是否正确。
- N副本 :是PB和TMR的推广,可执行N个副本。
- 自检查对(SCP) :先执行两个副本,比较结果,若相同则无需执行第三个副本,逻辑上等同于TMR,但更具适应性。
引入冗余任务增加了智能体问题解决的复杂性,因此开发预定义机制以减少状态空间大小和搜索复杂度非常重要。这些机制不仅用于多智能体协调,也用于单智能体规划。例如,将PE技术转换为预定义机制的步骤如下:
1. 智能体X对任务A做出承诺,确定A的完成时间和失败阈值。
2. 智能体Y对任务B做出承诺,确定B的完成时间和可能的开始时间。
3. 建立通信策略,确保Y了解A的结果。
4. 若A成功,Y取消对B的承诺;否则,执行B。
以下是PE机制的参数说明表格:
| 参数 | 说明 |
| ---- | ---- |
| A完成时间 | 决定A何时完成 |
| A失败阈值 | 判断A是否失败的标准 |
| B完成时间 | 决定B何时完成 |
| B开始时间 | B通常在A完成后开始,但可灵活调整 |
预定义机制可识别策略中的常见模式,简化评估过程,且可根据现有协调策略定义更多机制,以应对不同情况。
7 组织相关的故障
之前介绍的框架可处理任务故障,但大型多智能体系统还需应对智能体故障、组织变更等问题。若不解决系统的鲁棒性问题,可能导致系统故障、控制结构崩溃等严重后果。因此,我们以扫雷问题为例,探讨如何增强计划的鲁棒性。
7.1 扫雷问题
假设有一片雷区需要清扫,将一批机器人扫雷器空投到该区域。每个机器人可在区域内移动、检测地雷,并可自爆以摧毁周围地雷。机器人需相互合作,以最大化扫雷效果。
为确保系统的鲁棒性,需解决以下问题:
- 由于智能体数量多,单个智能体无法建立全局计划,且若该智能体死亡,计划将丢失。
- 不适合所有智能体直接协商,受带宽和通信干扰限制。
- 智能体需自我组织和服务,因为没有外部服务和基础设施可用。
- 智能体需形成小组合作探索地图,这种三层架构(个体、小组和组织)在大型多智能体系统中至关重要,但相关研究较少。
- 需不断监测小组状态,因为智能体可能随时离开小组。
- 若小组领导者死亡,需重新组建小组并恢复计划。
7.2 小组形成与计划组成
在扫雷问题中,智能体共享扫雷的总体目标,可通过目标定义小组组织。顶层目标的成员集是所有智能体,底层每个智能体有自己的局部目标。大型系统需要中间层目标,形成目标网络和层次结构。
小组形成过程类似于层次聚类,从单个智能体开始,相邻小组合并成更大的小组,并定义各自的目标。为确保可扩展性,需限制小组规模。小组规划和协调包括三种活动:
1. 小组规划 :小组领导者修改小组意图,如决定清扫区域。
2. 小组内协调 :小组成员协商各自的责任区域,优化计划。
3. 小组间协调 :小组之间协调以减少重叠区域,优化共同目标。
7.3 小组维护
每个小组应有领导者,负责代表成员、设计计划和与其他小组交互。领导者应能跟踪成员,成员应能与领导者保持联系。为检测成员离开小组,可采用“心跳”机制:
- 成员定期向领导者发送“心跳消息”,若领导者一段时间未收到消息,则认为成员离开。
- 领导者定期向成员广播消息,若成员一段时间未收到消息,则认为领导者离开。
然而,“心跳”机制并非万无一失,可能存在通信正常但其他组件故障的情况,且可能面临恶意故障。
7.4 计划恢复
小组中非领导者成员离开会导致计划部分不一致,但领导者可重新规划。若领导者死亡,需建立计划恢复机制。一种方法是在小组中设置备份,但会增加组织复杂度和开销;另一种方法是让其他成员宣布接管小组目标,收集当前计划信息,重新规划小组。
8 总结
本文讨论了可降级多智能体系统的规划问题,提出了一个将容错技术集成到智能体规划和协调中的框架,以处理领域问题解决中的不确定性和组织变更。该框架从决策理论层面定义可执行性,逐步过渡到智能体规划和协调层面,最后到组织层面。我们的最终目标是创建容错多智能体系统,使传统系统的容错技术能简单应用于多智能体系统。当前的挑战是将鲁棒性融入系统设计的各个方面,仍有许多工作需要完成。此外,研究旨在增强和扩展现有规划框架,协调是提高系统鲁棒性以应对任务故障和组织故障的关键。虽然所涉及的容错技术并非全新,但在自主智能体系统和鲁棒组织中有了新的含义。
可降级多智能体系统的鲁棒规划技术解析
9 多智能体系统鲁棒规划的关键要点回顾
在探讨多智能体系统鲁棒规划的过程中,我们已经了解了多个层面的重要内容。从底层的去中心化多智能体马尔可夫决策过程,为问题解决提供形式化基础,到中层通过近似方法将任务级策略转化为状态级策略,利用承诺进行智能体协调,再到顶层开发预定义的容错协调机制,以及处理组织相关故障的方法。以下是对这些关键要点的总结表格:
|层面|关键内容|
| ---- | ---- |
|底层|使用状态表示建模问题解决过程,扩展标准马尔可夫决策过程,分离通信决策和领域动作,建立与智能体规划和协调策略的联系|
|中层|将任务级策略转换为状态级策略,用承诺作为协调工具,区分系统级和单智能体策略,处理承诺的不确定性,通过通信交换策略信息|
|顶层|引入可执行性概念,基于系统活动完成水平评估,采用多种容错技术处理任务故障,开发预定义机制提高系统可扩展性和性能|
|组织层面|以扫雷问题为例,解决小组形成、计划组成、维护和恢复等问题,确保系统在智能体故障和组织变更时的鲁棒性|
10 多智能体系统鲁棒规划的实际应用分析
多智能体系统鲁棒规划在许多实际场景中都有重要应用。例如在物流配送领域,多个智能体(如无人机、机器人等)需要协同工作完成货物的运输任务。在这个过程中,可能会遇到各种不确定性,如天气变化、设备故障等。通过应用我们所讨论的鲁棒规划技术,可以提高系统的可靠性和效率。
下面以一个简单的物流配送场景为例,说明如何应用这些技术:
1. 任务分配 :根据智能体的能力和任务的要求,将货物分配给合适的智能体。可以使用智能体的能力知识库和效用结构,通过优化算法进行任务分配。例如,某个智能体对特定区域的配送任务有更高的效用,就可以将该区域的货物分配给它。
2. 容错处理 :在配送过程中,可能会出现智能体故障的情况。可以采用主备份、检查点等容错技术。例如,为每个主要的配送任务安排一个备份智能体,当主智能体出现故障时,备份智能体可以立即接管任务。同时,在配送路线上设置检查点,定期保存智能体的状态信息,以便在故障发生时能够快速恢复。
3. 小组协调 :多个智能体可以组成小组进行协同配送。小组内的智能体需要进行协调,避免任务冲突和资源浪费。可以使用承诺机制,每个智能体对自己的任务做出承诺,其他智能体根据这些承诺进行规划和协调。例如,一个智能体承诺在某个时间到达某个地点进行货物交接,其他智能体可以根据这个承诺调整自己的路线和时间。
以下是这个物流配送场景的 mermaid 流程图:
graph LR
A[任务分配] --> B{是否有智能体故障?}
B -- 是 --> C[启动备份智能体]
B -- 否 --> D[智能体执行任务]
C --> D
D --> E[到达检查点]
E --> F{是否需要小组协调?}
F -- 是 --> G[进行小组协调]
F -- 否 --> H[继续执行任务]
G --> H
H --> I[完成任务]
11 多智能体系统鲁棒规划的未来发展趋势
随着科技的不断发展,多智能体系统鲁棒规划也将面临新的挑战和机遇。以下是一些可能的未来发展趋势:
- 与人工智能技术的深度融合 :人工智能技术如机器学习、深度学习等将为多智能体系统鲁棒规划带来更强大的能力。例如,通过机器学习算法可以对智能体的行为进行预测和优化,提高系统的适应性和鲁棒性。
- 更加复杂的环境适应能力 :多智能体系统将面临更加复杂和不确定的环境,如太空探索、深海探测等。需要开发更加先进的鲁棒规划技术,使系统能够在这些极端环境中正常运行。
- 跨领域的应用拓展 :多智能体系统鲁棒规划将不仅仅局限于传统的领域,如物流、制造等,还将拓展到医疗、教育、金融等领域。例如,在医疗领域,多个智能医疗设备可以协同工作,为患者提供更加精准的诊断和治疗方案。
12 结论
多智能体系统鲁棒规划是一个充满挑战和机遇的研究领域。通过本文所介绍的框架和方法,我们可以有效地处理多智能体系统中的不确定性和组织变更,提高系统的可靠性和性能。在未来的发展中,我们需要不断探索新的技术和方法,将鲁棒性融入到系统设计的各个方面,以适应不断变化的环境和需求。同时,跨领域的合作和应用拓展也将为多智能体系统鲁棒规划带来更广阔的发展空间。希望本文能够为相关领域的研究和实践提供有益的参考,推动多智能体系统鲁棒规划技术的不断进步。
超级会员免费看
902

被折叠的 条评论
为什么被折叠?



