多构象问题是冷冻电镜三维重构的难题之一。同种颗粒可能会有多种不同的形态,有些形态甚至是连续变化的,因此利用中央截面定理从多种构象混合的二维单颗粒中重构多种构象是很困难的。
想要区分不同构象,最简单的思想就是从二维空间区分不同的颗粒,因此有人希望在二维聚类阶段对不同构象能有所区分,引出了第一篇作品,二维空间通过聚P. A. Penczek的“Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images,” 该论文主要是介绍了一种聚类方法,在测试是举了一个关于区分构象的例子,下面详细介绍一下:
该算法名为iterative stable alignment and clustering (ISAC) ,ISAC由SAC组成,SAC分为两个模块EQK-means和stability test。
下面是EQK-means的算法步骤,与K-means几乎相同,差别在于在迭代中类的成员达到特定值后不再接收新成员。
EQK-means后进行stability test,将图像分为稳定和非稳定
为了得到准确率高的结果,多个SAC并行迭代处理,可复现的结果才会被采纳。
文中用RNAPII测试,从二维平均图可以初步观测两种构象的不同(图中黄色箭头标记处),重构结果如右图所示。
第二类方法是基于3DPCA的方法,更加主流、靠谱一些,以P. A. Penczek的“Identifying Conformational States of Macromolecules by Eigen-Analysis of Resampled Cryo-EM Images,”为例,本质是对多种构象二维单颗粒图像的区分
以上是P. A. Penczek的两个工作
Z. F. Yang, J. Fang, J. Chittuluru, F. J. Asturias, and P. A. Penczek, “Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images,” Structure, vol. 20, no. 2, pp. 237-247, Feb 8, 2012.
P. A. Penczek, M. Kimmel, and C. M. T. Spahn, “Identifying Conformational States of Macromolecules by Eigen-Analysis of Resampled Cryo-EM Images,” Structure, vol. 19, no. 11, pp. 1582-1590, Nov 9, 2011.
关于多构象辨别尤其是连续构象的辨别,目前仍然是热点,介绍两个最近的工作:
E. D. Zhong, T. Bepler, B. Berger, and J. H. Davis, “CryoDRGN: reconstruction of heterogeneous cryo-EM structures using neural networks,” Nature Methods, vol. 18, no. 2, pp. 176-+, Feb, 2021.
Chen, M., Ludtke, S.J. Deep learning-based mixed-dimensional Gaussian mixture model for characterizing variability in cryo-EM. Nat Methods 18, 930–936 (2021).