1. 数据类型详细介绍
我们已经学习了基本的内置类型:以及他们所占存储空间的大小。
类型的意义:
1.
使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2.
如何看待内存空间的视角。
类型的基本归类:
1.1整形家族
char//字符在内存中存储的是字符的ASCII码值,ASCII码值是整型,所以字符类型归类到整型家族
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
1.2浮点数家族:
float
double
1.3构造类型:
> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union
1.4指针类型
int *pi;
char *pc;
float* pf;
void* pv;
1.5空类型:
void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
2. 整形在内存中的存储:原码、反码、补码
2.1整形在内存中的存储:
我们知道变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
eg:
int a = 20;
int b = -10;
我们知道为
a
分配四个字节的空间。
那么数据在所开辟内存中到底是如何存储的呢?
2.2原码、反码、补码
计算机中的整数有三种
2
进制表示方法,即原码、反码和补码。
三种表示方法均有
符号位
和
数值位
两部分,符号位都是用
0
表示
“
正
”
,用
1
表示
“
负
”
,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码
+1
就得到补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;
同时,加法和减法也可以统一处理(
CPU
只有加法器
)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。
int main()
{
int a = -10;//4个字节-32bit位
//10000000000000000000000000001010
//11111111111111111111111111110101
//11111111111111111111111111110110(-10的补码)
//1111 1111 1111 1111 1111 1111 1111 0110
// f f f f f f f 6
//0x ffffff f6
unsigned int b = -10;
//11111111111111111111111111110110
return 0;
}
我们可以看到对于
a
和
b
分别存储的是补码。但是我们发现顺序有点
不对劲
。
这是又为什么?
3. 大小端字节序介绍及判断
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位
,
,保存在内存的高地
址中。
int a=0x11223344
2.3为什么有大端和小端:
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为
8 bit
。但是在
C
语言中除了
8 bit
的
char
之外,还有
16 bit
的
short
型,
32 bit
的
long
型(要看具体的编译器),另外,对于位数大于
8
位的处理器,例如
16
位或者
32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。
例如:一个
16bit
的
short
型
x
,在内存中的地址为
0x0010
,
x
的值为
0x1122
,那么
0x11
为
高字节,
0x22
为低字节。对于大端模式,就将
0x11
放在低地址中,即
0x0010
中,
0x22
放在高
地址中,即
0x0011
中。小端模式,刚好相反。我们常用的
X86
结构是小端模式,而
KEIL C51
则
为大端模式。很多的
ARM
,
DSP
都为小端模式。有些
ARM
处理器还可以由硬件来选择是大端模式
还是小端模式。
列题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。
4. 浮点型在内存中的存储解析
常见的浮点数:
3.14159
1E10
浮点数家族包括:
float
、
double
、
long double
类型。
浮点数表示的范围:
float.h
中定义
浮点数存储的例子:
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
输出的结果为
4.2 浮点数存储规则
num
和
*pFloat
在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准
IEEE
(电气和电子工程协会)
754
,任意一个二进制浮点数
V
可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S
表示符号位,当
S=0
,
V
为正数;当
S=1
,
V
为负数。
M
表示有效数字,大于等于
1
,小于
2
。
2^E
表示指数位
举例来说:
十进制的
5.0
,写成二进制是
101.0
,相当于
1.01×2^2
。
那么,按照上面
V
的格式,可以得出
S=0
,
M=1.01
,
E=2
。
十进制的
-5.0
,写成二进制是
-
101.0
,相当于
-
1.01×2^2
。那么,
S=1
,
M=1.01
,
E=2
。
IEEE 754规定:
对于
32
位的浮点数,最高的
1
位是符号位
s
,接着的
8
位是指数
E
,剩下的
23
位为有效数字
M
。
对于
64
位的浮点数,最高的
1
位是符号位S,接着的
11
位是指数
E
,剩下的
52
位为有效数字
M
。
IEEE 754
对有效数字
M
和指数
E
,还有一些特别规定。
前面说过,
1≤M<2
,也就是说,
M
可以写成
1.xxxxxx
的形式,其中
xxxxxx
表示小数部分。
IEEE 754
规定,在计算机内部保存
M
时,默认这个数的第一位总是
1
,因此可以被舍去,只保存后面的
xxxxxx
部分。比如保存
1.01
的时
候,只保存
01
,等到读取的时候,再把第一位的
1
加上去。这样做的目的,是节省
1
位有效数字。以
32
位
浮点数为例,留给
M
只有
23
位,
将第一位的
1
舍去以后,等于可以保存
24
位有效数字。
至于指数
E
,情况就比较复杂。
首先,
E
为一个无符号整数(
unsigned int
)
这意味着,如果
E
为
8
位,它的取值范围为
0~255
;如果
E
为
11
位,它的取值范围为
0~2047
。但是,我们
知道,科学计数法中的
E
是可以出
现负数的,所以
IEEE 754
规定,存入内存时
E
的真实值必须再加上一个中间数,对于
8
位的
E
,这个中间数
是
127
;对于
11
位的
E
,这个中间
数是
1023
。比如,
2^10
的
E
是
10
,所以保存成
32
位浮点数时,必须保存成
10+127=137
,即
10001001
。
指数
E
从内存中取出还可以再分成三种情况:
E
不全为
0
或不全为
1
这时,浮点数就采用下面的规则表示,即指数
E
的计算值减去
127
(或
1023
),得到真实值,再将
有效数字
M
前加上第一位的
1
。
0.5
(
1/2
)的二进制形式为
0.1
,由于规定正数部分必须为
1
,即将小数点右移
1
位,则为
1.0*2^(-1)
,其阶码为
-1+127=126
,表示为
01111110
,而尾数
1.0
去掉整数部分为
0
,补齐
0
到
23
位
00000000000000000000000
,则其二进
制表示形式为
:
0 01111110 00000000000000000000000
E
全为
0
这时,浮点数的指数
E
等于
1-127
(或者
1-1023
)即为真实值,
有效数字
M
不再加上第一位的
1
,而是还原为
0.xxxxxx
的小数。这样做是为了表示
±0
,以及接近于
0
的很小的数字。
E
全为
1
这时,如果有效数字
M
全为
0
,表示
±
无穷大(正负取决于符号位
s
)
好了,关于浮点数的表示规则,就说到这里。
今天的分享到这里就结束啦!如果觉得文章还不错的话,可以三连
支持一下