故事背景:
未经优化的分组聚合在Hive里面,是通过一个MapReduceJob实现的。
Map端负责读取数据,并按照分组字段分区,通过Shuffle,将数据发往Reduce端,各组数据在Reduce端完成最终的聚合运算。
思路:
Hive对分组聚合的优化主要围绕着减少Shuffle数据量进行,具体做法是map-side聚合。
map-side聚合,就是在map端维护一个hash table,利用其完成部分的聚合,然后将部分聚合的结果,按照分组字段分区,发送至reduce端,完成最终的聚合。
map-side聚合能有效减少shuffle的数据量,提高分组聚合运算的效率。
--启用map-side聚合
set hive.map.aggr=true;
-- 用于检测源表数据是否适合进行map-side聚合。
-- 检测的方法是:先对若干条数据进行map-side聚合,若聚合后的条数和聚合前的条数比值小于该值,
-- 则认为该表适合进行map-side聚合;
-- 否则,认为该表数据不适合进行map-side聚合,后续数据便不再进行map-side聚合。
set hive.map.aggr.hash.min.reduction=0.5;
--用于检测源表是否适合map-side聚合的条数。
set hive.groupby.mapaggr.checkinterval=100000;
--map-side聚合所用的hash table,占用map task堆内存的最大比例,若超出该值,则会对hash table进行一次flush。
set hive.map.aggr.hash.force.flush.memory.threshold=0.9;