Hive优化--分组聚合

Hive通过map-side聚合来优化分组聚合操作,减少Shuffle数据量,提高效率。此方法在map端使用hashtable进行部分聚合,然后将结果发送到reduce端完成最终聚合。启用map-side聚合的设置包括检查源表是否适合聚合的条件以及内存阈值管理。
摘要由CSDN通过智能技术生成

故事背景:

未经优化的分组聚合在Hive里面,是通过一个MapReduceJob实现的。

Map端负责读取数据,并按照分组字段分区,通过Shuffle,将数据发往Reduce端,各组数据在Reduce端完成最终的聚合运算。

思路:

  • Hive对分组聚合的优化主要围绕着减少Shuffle数据量进行,具体做法是map-side聚合。

  • map-side聚合,就是在map端维护一个hash table,利用其完成部分的聚合,然后将部分聚合的结果,按照分组字段分区,发送至reduce端,完成最终的聚合。

  • map-side聚合能有效减少shuffle的数据量,提高分组聚合运算的效率。

--启用map-side聚合
set hive.map.aggr=true;

-- 用于检测源表数据是否适合进行map-side聚合。
-- 检测的方法是:先对若干条数据进行map-side聚合,若聚合后的条数和聚合前的条数比值小于该值,
-- 则认为该表适合进行map-side聚合;
-- 否则,认为该表数据不适合进行map-side聚合,后续数据便不再进行map-side聚合。
set hive.map.aggr.hash.min.reduction=0.5;

--用于检测源表是否适合map-side聚合的条数。
set hive.groupby.mapaggr.checkinterval=100000;

--map-side聚合所用的hash table,占用map task堆内存的最大比例,若超出该值,则会对hash table进行一次flush。
set hive.map.aggr.hash.force.flush.memory.threshold=0.9;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值