多元函数链导法则的理解
多元函数的链导法则:
设有复合函数
z = z ( u 1 , ⋯ , u n ) , u i = u i ( x 1 , ⋯ , x 2 ) , i = 1 , 2 , ⋯ , n (1) z = z(u_1, \cdots, u_n),u_i = u_i(x_1, \cdots, x_2),i = 1, 2, \cdots, n \tag{1} z=z(u1,⋯,un),ui=ui(x1,⋯,x2),i=1,2,⋯,n(1)
则 z z z 关于某个自变量 x j x_j xj 的偏导数等于 z z z 对于每个域 x j x_j xj 有关的中间变量 u i u_i ui 的偏导数与这个中间 变量 u i u_i ui 对 x i x_i xi 的偏导数之积的综合,即
∂ z ∂ x j = ∑ i = 1 n ∂ z ∂ u i ∂ u i ∂ x j = ∂ z ∂ u 1 ∂ u 1 ∂ x j + ⋯ + ∂ z ∂ u n ∂ u n ∂ x j , j = 1 , ⋯ , l (2) \frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l \tag{2} ∂xj∂z=i=1∑n ∂ui∂z∂xj∂ui=∂u1∂z∂xj∂u1+⋯