多元函数链导法则的理解

本文介绍了多元函数的链导法则,通过公式展示如何求解复合函数关于某个自变量的偏导数,并通过与一元复合函数求导法则的对比帮助理解。内容包括全微分与链导公式的关系,以及如何推导出链导法则和全微分形式不变性。
摘要由CSDN通过智能技术生成

多元函数链导法则的理解

多元函数的链导法则:

​ 设有复合函数
z = z ( u 1 , ⋯   , u n ) , u i = u i ( x 1 , ⋯   , x 2 ) , i = 1 , 2 , ⋯   , n (1) z = z(u_1, \cdots, u_n),u_i = u_i(x_1, \cdots, x_2),i = 1, 2, \cdots, n \tag{1} z=z(u1,,un)ui=ui(x1,,x2)i=1,2,,n(1)
​ 则 z z z 关于某个自变量 x j x_j xj 的偏导数等于 z z z 对于每个域 x j x_j xj 有关的中间变量 u i u_i ui 的偏导数与这个中间 变量 u i u_i ui x i x_i xi 的偏导数之积的综合,即
∂ z ∂ x j = ∑ i = 1 n   ∂ z ∂ u i ∂ u i ∂ x j = ∂ z ∂ u 1 ∂ u 1 ∂ x j + ⋯ + ∂ z ∂ u n ∂ u n ∂ x j , j = 1 , ⋯   , l (2) \frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l \tag{2} xjz=i=1n uizxjui=u1zxju1+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值