多元函数链导法则的理解

本文介绍了多元函数的链导法则,通过公式展示如何求解复合函数关于某个自变量的偏导数,并通过与一元复合函数求导法则的对比帮助理解。内容包括全微分与链导公式的关系,以及如何推导出链导法则和全微分形式不变性。
摘要由CSDN通过智能技术生成

多元函数链导法则的理解

多元函数的链导法则:

​ 设有复合函数
z = z ( u 1 , ⋯   , u n ) , u i = u i ( x 1 , ⋯   , x 2 ) , i = 1 , 2 , ⋯   , n (1) z = z(u_1, \cdots, u_n),u_i = u_i(x_1, \cdots, x_2),i = 1, 2, \cdots, n \tag{1} z=z(u1,,un)ui=ui(x1,,x2)i=1,2,,n(1)
​ 则 z z z 关于某个自变量 x j x_j xj 的偏导数等于 z z z 对于每个域 x j x_j xj 有关的中间变量 u i u_i ui 的偏导数与这个中间 变量 u i u_i ui x i x_i xi 的偏导数之积的综合,即
∂ z ∂ x j = ∑ i = 1 n   ∂ z ∂ u i ∂ u i ∂ x j = ∂ z ∂ u 1 ∂ u 1 ∂ x j + ⋯ + ∂ z ∂ u n ∂ u n ∂ x j , j = 1 , ⋯   , l (2) \frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l \tag{2} xjz=i=1n uizxjui=u1zxju1++unzxjun,j=1,,l(2)
​ 公式 (2)称为链导法则

​ 可以发现,当 n = 1 , l = 1 n = 1,l = 1 n=1,l=1 时,公式(2)变为
d z d x = d z d u d u d x (3) \frac{dz}{dx} = \frac{dz}{du} \frac{du}{dx} \tag{3} dxdz=dudzdxdu(3)
​ 即为一元复合函数求导法则。

​ 在之前的全微分的学习中,我们得到结论:

​ 若函数 z = f ( x , y ) z = f(x, y) z=f(x,y) 可微,则
Δ z = f x ′ ( x , y ) Δ x   +   f y ′ ( x , y ) Δ y   +   o ( ρ ) (4) \Delta z = f'_x(x, y) \Delta x \ + \ f'_y(x, y) \Delta y \ + \ o(\rho) \tag{4} Δz=fx(x,y)Δx + fy(x,y)Δy + o(ρ)(4)
​ 所以变量 z z z 的变化量可以由两个线性无关的变量 x , y x, y x,y 线性表示

​ 因此,我们可以把 z , u i , x j , i = 1 , ⋯   , n ;   j = 1 , ⋯ l z, u_i, x_j, i = 1, \cdots, n; \ j = 1, \cdots l z,ui,xj,i=1,,n; j=1,l 看作一个一个的类

​ 例如,设有函数 z = z ( u 1 , u 2 , u 3 ) , u 1 = u 1 ( x 1 , x 2 ) , u 2 = u 2 ( x 1 , x 2 ) . u 3 = u 3 ( x 1 , x 2 ) z = z(u_1, u_2, u_3), u_1 = u_1(x_1, x_2), u_2 = u_2(x_1, x_2). u_3 = u_3(x_1, x_2) z=z(u1,u2,u3),u1=u1(x1,x2),u2=u2(x1,x2).u3=u3(x1,x2)

// z = z(u1, u2, u3) 代表 z 是一个可以由 u1, u2 , u3 线性表示的变量
public class z {
    u1 = new u1();
    u2 = new u2();
    u3 = new u3();
}

//u1 = u1(x1, x2) 代表 u1 是一个可以由 x1, x2 线性表示的变量
public class u1 {
    x1 = new x1();
    x2 = new x2();
}

//u2 = u2(x1, x2) 代表 u2 是一个可以由 x1, x2 线性表示的变量
public class u1 {
    x1 = new x1();
    x2 = new x2();
}

//u3 = u3(x1, x2) 代表 u3 是一个可以由 x1, x2 线性表示的变量
public class u1 {
    x1 = new x1();
    x2 = new x2();
}

//代表 x1 是一个变量,且与 x2 线性无关
public class x1 {
    int value_x1;
}

//代表 x2 是一个变量,且与 x3 线性无关
public class x2 {
    int value_x2;
}

各个类之间的关系如下图所示

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2GAU5MUX-1584410045360)(C:\Users\86152\AppData\Roaming\Typora\typora-user-images\image-20200317090733574.png)]

因为从 z z z x 1 x1 x1 的路径有 z → u 1 → x 1 ,   z → u 2 → x 1 ,   z → u 3 → x 1 z \to u1 \to x1,\ z \to u2 \to x1, \ z \to u3 \to x1 zu1x1, zu2x1, zu3x1 ,所以当类 x 1 x1 x1 发生改变时,类 z z z 的三个属性 u 1 , u 2 , u 3 u1, u2, u3 u1,u2,u3 均发生相应改变,由公式(4)我们可以得到
Δ z = z u 1 ′ Δ u 1 + z u 2 ′ Δ u 2 + z u 3 ′ Δ u 3 Δ u 1 = ∂ u 1 ∂ x 1 Δ x 1 + ∂ u 1 ∂ x 2 Δ x 2 Δ u 2 = ∂ u 2 ∂ x 1 Δ x 1 + ∂ u 2 ∂ x 2 Δ x 2 Δ u 3 = ∂ u 3 ∂ x 1 Δ x 1 + ∂ u 3 ∂ x 2 Δ x 2 \begin{aligned}\Delta z &= z'_{u_1} \Delta u_1 + z'_{u_2} \Delta u_2 + z'_{u_3} \Delta u_3 \\\Delta u_1 &= \frac{\partial u_1}{\partial x_1} \Delta x_1 + \frac{\partial u_1}{\partial x_2} \Delta x_2 \\\Delta u_2 &= \frac{\partial u_2}{\partial x_1} \Delta x_1 + \frac{\partial u_2}{\partial x_2} \Delta x_2 \\\Delta u_3 &= \frac{\partial u_3}{\partial x_1} \Delta x_1 + \frac{\partial u_3}{\partial x_2} \Delta x_2\end{aligned} ΔzΔu1Δu2Δu3=zu1Δu1+zu2Δu2+zu3Δu3=x1u1Δx1+x2u1Δx2=x1u2Δx1+x2u2Δx2=x1u3Δx1+x2u3Δx2
​ 因此,可以推导得链导公式
∂ z ∂ x j = ∑ i = 1 n   ∂ z ∂ u i ∂ u i ∂ x j = ∂ z ∂ u 1 ∂ u 1 ∂ x j + ⋯ + ∂ z ∂ u n ∂ u n ∂ x j , j = 1 , ⋯   , l \frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l xjz=i=1n uizxjui=u1zxju1++unzxjun,j=1,,l
​ 同样我们可以推导出多元函数全微分形式不变性
d z = ∂ z ∂ x 1   d x 1 + ∂ z ∂ x 2   d x 2 = ∂ z ∂ u 1   d u 1 + ∂ z ∂ u 2   d u 2 + ∂ z ∂ u 3   d u 3 \begin{aligned}dz &= \frac{\partial z}{\partial x_1} \ dx_1 + \frac{\partial z}{\partial x_2} \ dx_2 \\ &= \frac{\partial z}{\partial u_1} \ du_1 + \frac{\partial z}{\partial u_2} \ du_2 + \frac{\partial z}{\partial u_3} \ du_3\end{aligned} dz=x1z dx1+x2z dx2=u1z du1+u2z du2+u3z du3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值