多元函数链导法则的理解
多元函数的链导法则:
设有复合函数
z
=
z
(
u
1
,
⋯
,
u
n
)
,
u
i
=
u
i
(
x
1
,
⋯
,
x
2
)
,
i
=
1
,
2
,
⋯
,
n
(1)
z = z(u_1, \cdots, u_n),u_i = u_i(x_1, \cdots, x_2),i = 1, 2, \cdots, n \tag{1}
z=z(u1,⋯,un),ui=ui(x1,⋯,x2),i=1,2,⋯,n(1)
则
z
z
z 关于某个自变量
x
j
x_j
xj 的偏导数等于
z
z
z 对于每个域
x
j
x_j
xj 有关的中间变量
u
i
u_i
ui 的偏导数与这个中间 变量
u
i
u_i
ui 对
x
i
x_i
xi 的偏导数之积的综合,即
∂
z
∂
x
j
=
∑
i
=
1
n
∂
z
∂
u
i
∂
u
i
∂
x
j
=
∂
z
∂
u
1
∂
u
1
∂
x
j
+
⋯
+
∂
z
∂
u
n
∂
u
n
∂
x
j
,
j
=
1
,
⋯
,
l
(2)
\frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l \tag{2}
∂xj∂z=i=1∑n ∂ui∂z∂xj∂ui=∂u1∂z∂xj∂u1+⋯+∂un∂z∂xj∂un,j=1,⋯,l(2)
公式 (2)称为链导法则
可以发现,当
n
=
1
,
l
=
1
n = 1,l = 1
n=1,l=1 时,公式(2)变为
d
z
d
x
=
d
z
d
u
d
u
d
x
(3)
\frac{dz}{dx} = \frac{dz}{du} \frac{du}{dx} \tag{3}
dxdz=dudzdxdu(3)
即为一元复合函数求导法则。
在之前的全微分的学习中,我们得到结论:
若函数
z
=
f
(
x
,
y
)
z = f(x, y)
z=f(x,y) 可微,则
Δ
z
=
f
x
′
(
x
,
y
)
Δ
x
+
f
y
′
(
x
,
y
)
Δ
y
+
o
(
ρ
)
(4)
\Delta z = f'_x(x, y) \Delta x \ + \ f'_y(x, y) \Delta y \ + \ o(\rho) \tag{4}
Δz=fx′(x,y)Δx + fy′(x,y)Δy + o(ρ)(4)
所以变量
z
z
z 的变化量可以由两个线性无关的变量
x
,
y
x, y
x,y 线性表示
因此,我们可以把 z , u i , x j , i = 1 , ⋯ , n ; j = 1 , ⋯ l z, u_i, x_j, i = 1, \cdots, n; \ j = 1, \cdots l z,ui,xj,i=1,⋯,n; j=1,⋯l 看作一个一个的类
例如,设有函数 z = z ( u 1 , u 2 , u 3 ) , u 1 = u 1 ( x 1 , x 2 ) , u 2 = u 2 ( x 1 , x 2 ) . u 3 = u 3 ( x 1 , x 2 ) z = z(u_1, u_2, u_3), u_1 = u_1(x_1, x_2), u_2 = u_2(x_1, x_2). u_3 = u_3(x_1, x_2) z=z(u1,u2,u3),u1=u1(x1,x2),u2=u2(x1,x2).u3=u3(x1,x2)
// z = z(u1, u2, u3) 代表 z 是一个可以由 u1, u2 , u3 线性表示的变量
public class z {
u1 = new u1();
u2 = new u2();
u3 = new u3();
}
//u1 = u1(x1, x2) 代表 u1 是一个可以由 x1, x2 线性表示的变量
public class u1 {
x1 = new x1();
x2 = new x2();
}
//u2 = u2(x1, x2) 代表 u2 是一个可以由 x1, x2 线性表示的变量
public class u1 {
x1 = new x1();
x2 = new x2();
}
//u3 = u3(x1, x2) 代表 u3 是一个可以由 x1, x2 线性表示的变量
public class u1 {
x1 = new x1();
x2 = new x2();
}
//代表 x1 是一个变量,且与 x2 线性无关
public class x1 {
int value_x1;
}
//代表 x2 是一个变量,且与 x3 线性无关
public class x2 {
int value_x2;
}
各个类之间的关系如下图所示
因为从
z
z
z 到
x
1
x1
x1 的路径有
z
→
u
1
→
x
1
,
z
→
u
2
→
x
1
,
z
→
u
3
→
x
1
z \to u1 \to x1,\ z \to u2 \to x1, \ z \to u3 \to x1
z→u1→x1, z→u2→x1, z→u3→x1 ,所以当类
x
1
x1
x1 发生改变时,类
z
z
z 的三个属性
u
1
,
u
2
,
u
3
u1, u2, u3
u1,u2,u3 均发生相应改变,由公式(4)我们可以得到
Δ
z
=
z
u
1
′
Δ
u
1
+
z
u
2
′
Δ
u
2
+
z
u
3
′
Δ
u
3
Δ
u
1
=
∂
u
1
∂
x
1
Δ
x
1
+
∂
u
1
∂
x
2
Δ
x
2
Δ
u
2
=
∂
u
2
∂
x
1
Δ
x
1
+
∂
u
2
∂
x
2
Δ
x
2
Δ
u
3
=
∂
u
3
∂
x
1
Δ
x
1
+
∂
u
3
∂
x
2
Δ
x
2
\begin{aligned}\Delta z &= z'_{u_1} \Delta u_1 + z'_{u_2} \Delta u_2 + z'_{u_3} \Delta u_3 \\\Delta u_1 &= \frac{\partial u_1}{\partial x_1} \Delta x_1 + \frac{\partial u_1}{\partial x_2} \Delta x_2 \\\Delta u_2 &= \frac{\partial u_2}{\partial x_1} \Delta x_1 + \frac{\partial u_2}{\partial x_2} \Delta x_2 \\\Delta u_3 &= \frac{\partial u_3}{\partial x_1} \Delta x_1 + \frac{\partial u_3}{\partial x_2} \Delta x_2\end{aligned}
ΔzΔu1Δu2Δu3=zu1′Δu1+zu2′Δu2+zu3′Δu3=∂x1∂u1Δx1+∂x2∂u1Δx2=∂x1∂u2Δx1+∂x2∂u2Δx2=∂x1∂u3Δx1+∂x2∂u3Δx2
因此,可以推导得链导公式
∂
z
∂
x
j
=
∑
i
=
1
n
∂
z
∂
u
i
∂
u
i
∂
x
j
=
∂
z
∂
u
1
∂
u
1
∂
x
j
+
⋯
+
∂
z
∂
u
n
∂
u
n
∂
x
j
,
j
=
1
,
⋯
,
l
\frac{\partial z}{\partial x_j} = \sum_{i = 1}^{n} \ \frac{\partial z}{\partial u_i} \frac{\partial u_i}{\partial x_j} = \frac{\partial z}{\partial u_1}\frac{\partial u_1}{\partial x_j} + \cdots + \frac{\partial z}{\partial u_n}\frac{\partial u_n}{\partial x_j},j = 1, \cdots, l
∂xj∂z=i=1∑n ∂ui∂z∂xj∂ui=∂u1∂z∂xj∂u1+⋯+∂un∂z∂xj∂un,j=1,⋯,l
同样我们可以推导出多元函数全微分形式不变性:
d
z
=
∂
z
∂
x
1
d
x
1
+
∂
z
∂
x
2
d
x
2
=
∂
z
∂
u
1
d
u
1
+
∂
z
∂
u
2
d
u
2
+
∂
z
∂
u
3
d
u
3
\begin{aligned}dz &= \frac{\partial z}{\partial x_1} \ dx_1 + \frac{\partial z}{\partial x_2} \ dx_2 \\ &= \frac{\partial z}{\partial u_1} \ du_1 + \frac{\partial z}{\partial u_2} \ du_2 + \frac{\partial z}{\partial u_3} \ du_3\end{aligned}
dz=∂x1∂z dx1+∂x2∂z dx2=∂u1∂z du1+∂u2∂z du2+∂u3∂z du3