矢量点积与矢量叉乘的微分
在对矢量点积与叉乘的微分公式进行推导之前,我们先看看这两个公式长什么样
矢量点积的微分:
d
(
F
⃗
⋅
x
⃗
)
=
x
⃗
d
F
⃗
+
F
⃗
d
x
⃗
(1)
d(\vec{F}\cdot \vec{x}) = \vec{x}d\vec{F} + \vec{F}d\vec{x} \tag{1}
d(F⋅x)=xdF+Fdx(1)
矢量叉乘的微分:
d
(
r
⃗
×
p
⃗
)
=
d
r
⃗
×
p
⃗
+
r
⃗
×
d
p
⃗
(2)
d(\vec{r} \times \vec{p}) = d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p} \tag{2}
d(r×p)=dr×p+r×dp(2)
我们可以发现,其形式与多元函数的全微分形式一致,那么问题来了,为什么点积与叉乘也满足多元函数的链导法则?
首先,我们将矢量写成坐标形式来进行讨论.
对于矢量的点积,设
F
⃗
=
(
x
1
,
y
1
)
,
x
⃗
=
(
x
2
,
y
2
)
\vec{F} = (x_1,y_1), \vec{x} = (x2,y2)
F=(x1,y1),x=(x2,y2),则有
d
(
F
⃗
⋅
x
⃗
)
=
d
(
x
1
x
2
+
y
1
y
2
)
=
d
(
x
1
x
2
)
+
d
(
y
1
y
2
)
=
x
2
d
x
1
+
x
1
d
x
2
+
y
2
d
y
1
+
y
1
d
y
2
=
(
x
2
,
y
2
)
(
d
x
1
,
d
y
1
)
+
(
x
1
,
y
1
)
(
d
x
2
,
d
y
2
)
=
x
⃗
d
F
⃗
+
F
⃗
d
x
⃗
\begin{aligned}d(\vec{F}\cdot \vec{x}) &= d(x_1x_2 +y_1y_2) = d(x_1x_2) + d(y_1y_2) \\ \\&=x_2dx_1 + x_1dx_2 + y_2dy_1 + y_1dy_2 \\ \\&= (x_2, y_2)(dx_1, dy_1) + (x_1, y_1)(dx_2, dy_2) \\ \\&= \vec{x}d\vec{F} + \vec{F}d\vec{x}\end{aligned}
d(F⋅x)=d(x1x2+y1y2)=d(x1x2)+d(y1y2)=x2dx1+x1dx2+y2dy1+y1dy2=(x2,y2)(dx1,dy1)+(x1,y1)(dx2,dy2)=xdF+Fdx
同样,对于矢量的叉乘,设
r
⃗
=
(
x
1
,
y
1
,
z
1
)
,
p
⃗
=
(
x
2
,
y
2
,
z
2
)
\vec{r} = (x_1, y_1, z_1), \vec{p} = (x_2, y_2, z_2)
r=(x1,y1,z1),p=(x2,y2,z2),则有
r
⃗
×
p
⃗
=
∣
i
⃗
j
⃗
k
⃗
x
1
y
1
z
1
x
2
y
2
z
2
∣
=
∣
y
1
z
1
y
2
z
2
∣
i
⃗
−
∣
x
1
z
1
x
2
z
2
∣
j
⃗
+
∣
x
1
y
1
x
2
y
2
∣
k
⃗
\begin{aligned} \vec{r} \times \vec{p} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \ \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \ \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \ \vec{k}\end{aligned}
r×p=∣∣∣∣∣∣ix1x2jy1y2kz1z2∣∣∣∣∣∣=∣∣∣∣y1y2z1z2∣∣∣∣ i−∣∣∣∣x1x2z1z2∣∣∣∣ j+∣∣∣∣x1x2y1y2∣∣∣∣ k
所以
d
(
r
⃗
×
p
⃗
)
=
d
∣
y
1
z
1
y
2
z
2
∣
i
⃗
−
d
∣
x
1
z
1
x
2
z
2
∣
j
⃗
+
d
∣
x
1
y
1
x
2
y
2
∣
k
⃗
=
d
(
y
1
z
2
−
z
1
y
2
)
i
⃗
−
d
(
x
1
z
2
−
z
1
x
2
)
j
⃗
+
d
(
x
1
y
2
−
y
1
x
2
)
k
⃗
=
(
z
2
d
y
1
+
y
1
d
z
2
−
y
2
d
z
1
−
z
1
d
y
2
)
i
⃗
−
(
z
2
d
x
1
+
x
1
d
z
2
−
x
2
d
z
1
−
z
1
d
x
2
)
j
⃗
+
(
y
2
d
y
1
+
x
1
d
y
2
−
x
2
d
y
1
−
y
1
d
x
2
)
k
⃗
\begin{aligned}d(\vec{r} \times \vec{p}) &= d\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \ \vec{i} - d\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \ \vec{j} + d\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \ \vec{k} \\ \\&=d(y_1z_2 - z_1y_2)\ \vec{i} -d(x_1z_2 - z_1x_2) \ \vec{j} + d(x_1y_2 - y_1x_2) \ \vec{k} \\ \\ &= (z_2dy_1 + y_1dz_2 - y_2dz_1 - z_1dy_2)\ \vec{i} - (z_2dx_1 + x_1dz_2 - x_2dz_1 - z_1dx_2) \ \vec{j}\\\\ &+ (y_2dy_1 + x_1dy_2 - x_2dy_1 - y_1dx_2) \ \vec{k}\end{aligned}
d(r×p)=d∣∣∣∣y1y2z1z2∣∣∣∣ i−d∣∣∣∣x1x2z1z2∣∣∣∣ j+d∣∣∣∣x1x2y1y2∣∣∣∣ k=d(y1z2−z1y2) i−d(x1z2−z1x2) j+d(x1y2−y1x2) k=(z2dy1+y1dz2−y2dz1−z1dy2) i−(z2dx1+x1dz2−x2dz1−z1dx2) j+(y2dy1+x1dy2−x2dy1−y1dx2) k
又因为
d
r
⃗
=
(
d
x
1
,
d
y
1
,
d
z
1
)
,
d
p
⃗
=
(
d
x
2
,
d
y
2
,
d
z
2
)
\begin{aligned}d\vec{r} &= (dx_1, dy_1, dz_1),d\vec{p} = (dx_2, dy_2, dz_2)\end{aligned}
dr=(dx1,dy1,dz1),dp=(dx2,dy2,dz2)
故
d
r
⃗
×
p
⃗
+
r
⃗
×
d
p
⃗
=
∣
i
⃗
j
⃗
k
⃗
d
x
2
d
y
2
d
z
2
x
1
y
1
z
1
∣
+
∣
i
⃗
j
⃗
k
⃗
x
2
y
2
z
2
d
x
1
d
y
1
d
z
1
∣
=
(
z
2
d
y
1
+
y
1
d
z
2
−
y
2
d
z
1
−
z
1
d
y
2
)
i
⃗
−
(
z
2
d
x
1
+
x
1
d
z
2
−
x
2
d
z
1
−
z
1
d
x
2
)
j
⃗
+
(
y
2
d
y
1
+
x
1
d
y
2
−
x
2
d
y
1
−
y
1
d
x
2
)
k
⃗
=
d
(
r
⃗
×
p
⃗
)
\begin{aligned}d\vec{r} \times\vec{p} + \vec{r} \times d\vec{p} &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ dx_2 & dy_2 & dz_2 \\ x_1 & y_1 & z_1 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_2 & y_2 & z_2 \\ dx_1 & dy_1 & dz_1 \end{vmatrix} \\ \\ &= (z_2dy_1 + y_1dz_2 - y_2dz_1 - z_1dy_2)\ \vec{i} - (z_2dx_1 + x_1dz_2 - x_2dz_1 - z_1dx_2) \ \vec{j}\\\\ &+ (y_2dy_1 + x_1dy_2 - x_2dy_1 - y_1dx_2) \ \vec{k}\\ \\&= d(\vec{r} \times \vec{p})\end{aligned}
dr×p+r×dp=∣∣∣∣∣∣idx2x1jdy2y1kdz2z1∣∣∣∣∣∣+∣∣∣∣∣∣ix2dx1jy2dy1kz2dz1∣∣∣∣∣∣=(z2dy1+y1dz2−y2dz1−z1dy2) i−(z2dx1+x1dz2−x2dz1−z1dx2) j+(y2dy1+x1dy2−x2dy1−y1dx2) k=d(r×p)
坐标角度进行推导的过程未免太过麻烦,那么我们不如换一个方向,直接从全微分的定义来进行推导
根据全微分的定义:
设函数
z
=
f
(
x
,
y
)
z = f(x, y)
z=f(x,y) 在点
(
x
0
,
y
0
)
(x_0, y_0)
(x0,y0) 的某邻域内有定义,
P
′
(
x
+
Δ
x
,
y
+
Δ
y
)
P'(x + \Delta x, y + \Delta y)
P′(x+Δx,y+Δy) 为该邻域内任意一点,则称
Δ
z
=
f
(
x
+
Δ
x
,
y
+
Δ
y
)
−
f
(
x
,
y
)
\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)
Δz=f(x+Δx,y+Δy)−f(x,y)
为函数在点
P
(
x
,
y
)
P(x, y)
P(x,y) 处的全增量.
若函数
z
=
f
(
x
,
y
)
z = f(x, y)
z=f(x,y) 在点
P
(
x
,
y
)
P(x, y)
P(x,y) 处的全增量能表示为
Δ
z
=
A
Δ
x
+
B
Δ
y
+
o
(
ρ
)
\Delta z = A\Delta x + B\Delta y + o(\rho)
Δz=AΔx+BΔy+o(ρ)
的形式,则说函数
z
=
f
(
x
,
y
)
z = f(x, y)
z=f(x,y) 在点
P
P
P 处可微,并称
A
Δ
x
+
B
Δ
y
A\Delta x + B \Delta y
AΔx+BΔy 为函数在点
P
P
P 处的全微分
那么我们先来试试矢量的点积
lim
Δ
F
⃗
→
(
0
,
0
)
,
Δ
x
⃗
→
(
0
,
0
)
Δ
(
F
⃗
⋅
x
⃗
)
=
lim
Δ
F
⃗
→
(
0
,
0
)
,
Δ
x
⃗
→
(
0
,
0
)
(
F
⃗
+
Δ
F
⃗
)
⋅
(
x
⃗
+
Δ
x
⃗
)
−
F
⃗
⋅
x
⃗
=
Δ
F
⃗
⋅
x
⃗
+
F
⃗
⋅
Δ
x
⃗
+
Δ
F
⃗
⋅
Δ
x
⃗
=
F
⃗
⋅
Δ
x
⃗
+
x
⃗
⋅
Δ
F
⃗
+
o
(
ρ
)
\begin{aligned} \lim_{\Delta \vec{F}\to (0, 0) , \Delta \vec{x} \to (0, 0)} \Delta(\vec{F}\cdot \vec{x}) &= \lim_{\Delta \vec{F} \to (0, 0), \Delta \vec{x} \to (0, 0)}(\vec{F} + \Delta \vec{F}) \cdot (\vec{x} + \Delta\vec{x}) - \vec{F} \cdot \vec{x} \\ \\ &= \Delta \vec{F} \cdot \vec{x} + \vec{F} \cdot \Delta \vec{x} + \Delta \vec{F} \cdot \Delta\vec{x} \\ \\ &= \vec{F} \cdot \Delta \vec{x} + \vec{x} \cdot \Delta \vec{F} + o(\rho) \end{aligned}
ΔF→(0,0),Δx→(0,0)limΔ(F⋅x)=ΔF→(0,0),Δx→(0,0)lim(F+ΔF)⋅(x+Δx)−F⋅x=ΔF⋅x+F⋅Δx+ΔF⋅Δx=F⋅Δx+x⋅ΔF+o(ρ)
所以,我们可以得到
d
(
F
⃗
⋅
x
⃗
)
=
x
⃗
d
F
⃗
+
F
⃗
d
x
⃗
d(\vec{F}\cdot \vec{x}) = \vec{x}d\vec{F} + \vec{F}d\vec{x}
d(F⋅x)=xdF+Fdx
接下来,我们尝试推导矢量的叉乘
lim
Δ
r
⃗
→
(
0
,
0
,
0
)
,
Δ
p
⃗
→
(
0
,
0
,
0
)
Δ
(
r
⃗
×
p
⃗
)
=
lim
Δ
r
⃗
→
(
0
,
0
,
0
)
,
Δ
p
⃗
→
(
0
,
0
,
0
)
(
r
⃗
+
Δ
r
⃗
)
×
(
p
⃗
+
Δ
p
⃗
)
−
r
⃗
×
p
⃗
=
r
⃗
×
Δ
p
⃗
+
Δ
r
⃗
×
p
⃗
+
Δ
r
⃗
×
Δ
p
⃗
=
r
⃗
×
Δ
p
⃗
+
Δ
r
⃗
×
p
⃗
+
o
(
ρ
)
\begin{aligned}\lim\limits_{\Delta \vec{r} \to (0, 0, 0) , \Delta \vec p \to (0, 0, 0)}\Delta(\vec{r} \times \vec{p}) &= \lim\limits_{\Delta \vec{r} \to (0, 0, 0) , \Delta \vec p \to (0, 0, 0)} (\vec{r} + \vec{\Delta r}) \times (\vec{p} + \Delta \vec{p}) - \vec{r} \times \vec{p} \\ \\&= \vec{r} \times \vec{\Delta p} + \Delta \vec{r} \times \vec{p} + \vec{\Delta r} \times \vec{\Delta p} \\ \\&= \vec{r} \times \vec{\Delta p} + \Delta \vec{r} \times \vec{p} + o(\rho)\end{aligned}
Δr→(0,0,0),Δp→(0,0,0)limΔ(r×p)=Δr→(0,0,0),Δp→(0,0,0)lim(r+Δr)×(p+Δp)−r×p=r×Δp+Δr×p+Δr×Δp=r×Δp+Δr×p+o(ρ)
所以,我们同样可以得到
d
(
r
⃗
×
p
⃗
)
=
d
r
⃗
×
p
⃗
+
r
⃗
×
d
p
⃗
d(\vec{r} \times \vec{p}) = d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p}
d(r×p)=dr×p+r×dp
与此同时,我们注意到(1)式与(2)式之间细微的区别,将两个等式放在一起比较
d
(
F
⃗
⋅
x
⃗
)
=
x
⃗
d
F
⃗
+
F
⃗
d
x
⃗
d
(
r
⃗
×
p
⃗
)
=
d
r
⃗
×
p
⃗
+
r
⃗
×
d
p
⃗
\begin{aligned}d(\vec{F}\cdot \vec{x}) &= \vec{x}d\vec{F} + \vec{F}d\vec{x} \\ \\d(\vec{r} \times \vec{p}) &= d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p}\end{aligned}
d(F⋅x)d(r×p)=xdF+Fdx=dr×p+r×dp
不难发现,由于矢量的点积满足交换律,而叉乘不满足交换律,矢量点积的等号右边全部可以写成
x
1
d
y
1
+
y
1
d
x
1
x_1dy_1 + y_1dx_1
x1dy1+y1dx1 的形式,而矢量叉乘必须保持原有顺序,
d
x
dx
dx 部分与
y
y
y 部分不能交换顺序。