矢量点积与矢量叉乘的微分

本文探讨了矢量点积与叉乘的微分公式,通过坐标形式的推导展示了点积的微分为xdF+Fdx,叉乘的微分为dr×p+r×dp,并对比了两者之间的差异,揭示了点积满足交换律而叉乘不满足这一特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矢量点积与矢量叉乘的微分

​ 在对矢量点积与叉乘的微分公式进行推导之前,我们先看看这两个公式长什么样

矢量点积的微分:
d ( F ⃗ ⋅ x ⃗ ) = x ⃗ d F ⃗ + F ⃗ d x ⃗ (1) d(\vec{F}\cdot \vec{x}) = \vec{x}d\vec{F} + \vec{F}d\vec{x} \tag{1} d(F x )=x dF +F dx (1)
矢量叉乘的微分:
d ( r ⃗ × p ⃗ ) = d r ⃗ × p ⃗ + r ⃗ × d p ⃗ (2) d(\vec{r} \times \vec{p}) = d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p} \tag{2} d(r ×p )=dr ×p +r ×dp (2)
​ 我们可以发现,其形式与多元函数的全微分形式一致,那么问题来了,为什么点积与叉乘也满足多元函数的链导法则?

首先,我们将矢量写成坐标形式来进行讨论.

对于矢量的点积,设 F ⃗ = ( x 1 , y 1 ) , x ⃗ = ( x 2 , y 2 ) \vec{F} = (x_1,y_1), \vec{x} = (x2,y2) F =(x1,y1),x =(x2,y2),则有
d ( F ⃗ ⋅ x ⃗ ) = d ( x 1 x 2 + y 1 y 2 ) = d ( x 1 x 2 ) + d ( y 1 y 2 ) = x 2 d x 1 + x 1 d x 2 + y 2 d y 1 + y 1 d y 2 = ( x 2 , y 2 ) ( d x 1 , d y 1 ) + ( x 1 , y 1 ) ( d x 2 , d y 2 ) = x ⃗ d F ⃗ + F ⃗ d x ⃗ \begin{aligned}d(\vec{F}\cdot \vec{x}) &= d(x_1x_2 +y_1y_2) = d(x_1x_2) + d(y_1y_2) \\ \\&=x_2dx_1 + x_1dx_2 + y_2dy_1 + y_1dy_2 \\ \\&= (x_2, y_2)(dx_1, dy_1) + (x_1, y_1)(dx_2, dy_2) \\ \\&= \vec{x}d\vec{F} + \vec{F}d\vec{x}\end{aligned} d(F x )=d(x1x2+y1y2)=d(x1x2)+d(y1y2)=x2dx1+x1dx2+y2dy1+y1dy2=(x2,y2)(dx1,dy1)+(x1,y1)(dx2,dy2)=x dF +F dx
同样,对于矢量的叉乘,设 r ⃗ = ( x 1 , y 1 , z 1 ) , p ⃗ = ( x 2 , y 2 , z 2 ) \vec{r} = (x_1, y_1, z_1), \vec{p} = (x_2, y_2, z_2) r =(x1,y1,z1),p =(x2,y2,z2),则有
r ⃗ × p ⃗ = ∣ i ⃗ j ⃗ k ⃗ x 1 y 1 z 1 x 2 y 2 z 2 ∣ = ∣ y 1 z 1 y 2 z 2 ∣   i ⃗ − ∣ x 1 z 1 x 2 z 2 ∣   j ⃗ + ∣ x 1 y 1 x 2 y 2 ∣   k ⃗ \begin{aligned} \vec{r} \times \vec{p} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \ \vec{i} - \begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \ \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \ \vec{k}\end{aligned} r ×p =i x1x2j y1y2k z1z2=y1y2z1z2 i x1x2z1z2 j +x1x2y1y2 k
所以
d ( r ⃗ × p ⃗ ) = d ∣ y 1 z 1 y 2 z 2 ∣   i ⃗ − d ∣ x 1 z 1 x 2 z 2 ∣   j ⃗ + d ∣ x 1 y 1 x 2 y 2 ∣   k ⃗ = d ( y 1 z 2 − z 1 y 2 )   i ⃗ − d ( x 1 z 2 − z 1 x 2 )   j ⃗ + d ( x 1 y 2 − y 1 x 2 )   k ⃗ = ( z 2 d y 1 + y 1 d z 2 − y 2 d z 1 − z 1 d y 2 )   i ⃗ − ( z 2 d x 1 + x 1 d z 2 − x 2 d z 1 − z 1 d x 2 )   j ⃗ + ( y 2 d y 1 + x 1 d y 2 − x 2 d y 1 − y 1 d x 2 )   k ⃗ \begin{aligned}d(\vec{r} \times \vec{p}) &= d\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \ \vec{i} - d\begin{vmatrix} x_1 & z_1 \\ x_2 & z_2 \end{vmatrix} \ \vec{j} + d\begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \ \vec{k} \\ \\&=d(y_1z_2 - z_1y_2)\ \vec{i} -d(x_1z_2 - z_1x_2) \ \vec{j} + d(x_1y_2 - y_1x_2) \ \vec{k} \\ \\ &= (z_2dy_1 + y_1dz_2 - y_2dz_1 - z_1dy_2)\ \vec{i} - (z_2dx_1 + x_1dz_2 - x_2dz_1 - z_1dx_2) \ \vec{j}\\\\ &+ (y_2dy_1 + x_1dy_2 - x_2dy_1 - y_1dx_2) \ \vec{k}\end{aligned} d(r ×p )=dy1y2z1z2 i dx1x2z1z2 j +dx1x2y1y2 k =d(y1z2z1y2) i d(x1z2z1x2) j +d(x1y2y1x2) k =(z2dy1+y1dz2y2dz1z1dy2) i (z2dx1+x1dz2x2dz1z1dx2) j +(y2dy1+x1dy2x2dy1y1dx2) k
又因为
d r ⃗ = ( d x 1 , d y 1 , d z 1 ) , d p ⃗ = ( d x 2 , d y 2 , d z 2 ) \begin{aligned}d\vec{r} &= (dx_1, dy_1, dz_1),d\vec{p} = (dx_2, dy_2, dz_2)\end{aligned} dr =(dx1,dy1,dz1)dp =(dx2,dy2,dz2)

d r ⃗ × p ⃗ + r ⃗ × d p ⃗ = ∣ i ⃗ j ⃗ k ⃗ d x 2 d y 2 d z 2 x 1 y 1 z 1 ∣ + ∣ i ⃗ j ⃗ k ⃗ x 2 y 2 z 2 d x 1 d y 1 d z 1 ∣ = ( z 2 d y 1 + y 1 d z 2 − y 2 d z 1 − z 1 d y 2 )   i ⃗ − ( z 2 d x 1 + x 1 d z 2 − x 2 d z 1 − z 1 d x 2 )   j ⃗ + ( y 2 d y 1 + x 1 d y 2 − x 2 d y 1 − y 1 d x 2 )   k ⃗ = d ( r ⃗ × p ⃗ ) \begin{aligned}d\vec{r} \times\vec{p} + \vec{r} \times d\vec{p} &= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ dx_2 & dy_2 & dz_2 \\ x_1 & y_1 & z_1 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_2 & y_2 & z_2 \\ dx_1 & dy_1 & dz_1 \end{vmatrix} \\ \\ &= (z_2dy_1 + y_1dz_2 - y_2dz_1 - z_1dy_2)\ \vec{i} - (z_2dx_1 + x_1dz_2 - x_2dz_1 - z_1dx_2) \ \vec{j}\\\\ &+ (y_2dy_1 + x_1dy_2 - x_2dy_1 - y_1dx_2) \ \vec{k}\\ \\&= d(\vec{r} \times \vec{p})\end{aligned} dr ×p +r ×dp =i dx2x1j dy2y1k dz2z1+i x2dx1j y2dy1k z2dz1=(z2dy1+y1dz2y2dz1z1dy2) i (z2dx1+x1dz2x2dz1z1dx2) j +(y2dy1+x1dy2x2dy1y1dx2) k =d(r ×p )
坐标角度进行推导的过程未免太过麻烦,那么我们不如换一个方向,直接从全微分的定义来进行推导

根据全微分的定义:

设函数 z = f ( x , y ) z = f(x, y) z=f(x,y) 在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 的某邻域内有定义, P ′ ( x + Δ x , y + Δ y ) P'(x + \Delta x, y + \Delta y) P(x+Δx,y+Δy) 为该邻域内任意一点,则称
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) Δz=f(x+Δx,y+Δy)f(x,y)
为函数在点 P ( x , y ) P(x, y) P(x,y) 处的全增量.

若函数 z = f ( x , y ) z = f(x, y) z=f(x,y) 在点 P ( x , y ) P(x, y) P(x,y) 处的全增量能表示为
Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z = A\Delta x + B\Delta y + o(\rho) Δz=AΔx+BΔy+o(ρ)
的形式,则说函数 z = f ( x , y ) z = f(x, y) z=f(x,y) 在点 P P P可微,并称 A Δ x + B Δ y A\Delta x + B \Delta y AΔx+BΔy 为函数在点 P P P 处的全微分

那么我们先来试试矢量的点积
lim ⁡ Δ F ⃗ → ( 0 , 0 ) , Δ x ⃗ → ( 0 , 0 ) Δ ( F ⃗ ⋅ x ⃗ ) = lim ⁡ Δ F ⃗ → ( 0 , 0 ) , Δ x ⃗ → ( 0 , 0 ) ( F ⃗ + Δ F ⃗ ) ⋅ ( x ⃗ + Δ x ⃗ ) − F ⃗ ⋅ x ⃗ = Δ F ⃗ ⋅ x ⃗ + F ⃗ ⋅ Δ x ⃗ + Δ F ⃗ ⋅ Δ x ⃗ = F ⃗ ⋅ Δ x ⃗ + x ⃗ ⋅ Δ F ⃗ + o ( ρ ) \begin{aligned} \lim_{\Delta \vec{F}\to (0, 0) , \Delta \vec{x} \to (0, 0)} \Delta(\vec{F}\cdot \vec{x}) &= \lim_{\Delta \vec{F} \to (0, 0), \Delta \vec{x} \to (0, 0)}(\vec{F} + \Delta \vec{F}) \cdot (\vec{x} + \Delta\vec{x}) - \vec{F} \cdot \vec{x} \\ \\ &= \Delta \vec{F} \cdot \vec{x} + \vec{F} \cdot \Delta \vec{x} + \Delta \vec{F} \cdot \Delta\vec{x} \\ \\ &= \vec{F} \cdot \Delta \vec{x} + \vec{x} \cdot \Delta \vec{F} + o(\rho) \end{aligned} ΔF (0,0),Δx (0,0)limΔ(F x )=ΔF (0,0),Δx (0,0)lim(F +ΔF )(x +Δx )F x =ΔF x +F Δx +ΔF Δx =F Δx +x ΔF +o(ρ)
所以,我们可以得到
d ( F ⃗ ⋅ x ⃗ ) = x ⃗ d F ⃗ + F ⃗ d x ⃗ d(\vec{F}\cdot \vec{x}) = \vec{x}d\vec{F} + \vec{F}d\vec{x} d(F x )=x dF +F dx
接下来,我们尝试推导矢量的叉乘
lim ⁡ Δ r ⃗ → ( 0 , 0 , 0 ) , Δ p ⃗ → ( 0 , 0 , 0 ) Δ ( r ⃗ × p ⃗ ) = lim ⁡ Δ r ⃗ → ( 0 , 0 , 0 ) , Δ p ⃗ → ( 0 , 0 , 0 ) ( r ⃗ + Δ r ⃗ ) × ( p ⃗ + Δ p ⃗ ) − r ⃗ × p ⃗ = r ⃗ × Δ p ⃗ + Δ r ⃗ × p ⃗ + Δ r ⃗ × Δ p ⃗ = r ⃗ × Δ p ⃗ + Δ r ⃗ × p ⃗ + o ( ρ ) \begin{aligned}\lim\limits_{\Delta \vec{r} \to (0, 0, 0) , \Delta \vec p \to (0, 0, 0)}\Delta(\vec{r} \times \vec{p}) &= \lim\limits_{\Delta \vec{r} \to (0, 0, 0) , \Delta \vec p \to (0, 0, 0)} (\vec{r} + \vec{\Delta r}) \times (\vec{p} + \Delta \vec{p}) - \vec{r} \times \vec{p} \\ \\&= \vec{r} \times \vec{\Delta p} + \Delta \vec{r} \times \vec{p} + \vec{\Delta r} \times \vec{\Delta p} \\ \\&= \vec{r} \times \vec{\Delta p} + \Delta \vec{r} \times \vec{p} + o(\rho)\end{aligned} Δr (0,0,0),Δp (0,0,0)limΔ(r ×p )=Δr (0,0,0),Δp (0,0,0)lim(r +Δr )×(p +Δp )r ×p =r ×Δp +Δr ×p +Δr ×Δp =r ×Δp +Δr ×p +o(ρ)
所以,我们同样可以得到
d ( r ⃗ × p ⃗ ) = d r ⃗ × p ⃗ + r ⃗ × d p ⃗ d(\vec{r} \times \vec{p}) = d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p} d(r ×p )=dr ×p +r ×dp
与此同时,我们注意到(1)式与(2)式之间细微的区别,将两个等式放在一起比较
d ( F ⃗ ⋅ x ⃗ ) = x ⃗ d F ⃗ + F ⃗ d x ⃗ d ( r ⃗ × p ⃗ ) = d r ⃗ × p ⃗ + r ⃗ × d p ⃗ \begin{aligned}d(\vec{F}\cdot \vec{x}) &= \vec{x}d\vec{F} + \vec{F}d\vec{x} \\ \\d(\vec{r} \times \vec{p}) &= d \vec{r} \times \vec{p} + \vec{r} \times d\vec{p}\end{aligned} d(F x )d(r ×p )=x dF +F dx =dr ×p +r ×dp
不难发现,由于矢量的点积满足交换律,而叉乘不满足交换律,矢量点积的等号右边全部可以写成 x 1 d y 1 + y 1 d x 1 x_1dy_1 + y_1dx_1 x1dy1+y1dx1 的形式,而矢量叉乘必须保持原有顺序, d x dx dx 部分与 y y y 部分不能交换顺序。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值