题目:
算法:快排分区函数
思路:
并未真正的实现快速排序算法。
快排分区函数:选择一个数,把数组的数分为两部分,把比选中的数小或者相等的数移到数组的左边,把比选中的数大的数移动到数组的右边,返回分区后的选中数所在的下标。
对数组调用了分区函数之后:
1. 如果返回的下标是k-1,那么数组左边的k个数(数组下标从0到k-1),就是k个最小的数;
2. 如果返回的下标大于k,那么从下标之前的数组中再次调用查找;
3. 如果返回的下标小于k,那么从下标开始之后的数组中再次调用查找。
代价:
时间复杂度: O(n)
空间复杂度:
应用:
- 一维数组的最小(或大)的k个数;
- 离直角坐标系原点最近的k个数;
- 广泛运用在排序和海量数据挑选当中。
代码:
C++代码实现
template<class T>
int Partition(T a[], int start, int end, int pivotIndex){
T pivot = a[pivotIndex];
Swap(a[pivotIndex], a[end]);
int storeIndex = start;
for(int i = start; i < end; ++i) {
if(a[i] < pivot) {
Swap(a[i], a[storeIndex]);
++storeIndex;
}
}
swap(a[storeIndex], a[end]);
return storeIndex;
}