有噪信道编码详解(前篇)

本文介绍了信道编码定理,即香农第二定理,阐述了如何通过编码和译码技术在有噪声的信道中提高信息传输的可靠性。讨论了错误概率与信道特性、编码方法和译码规则的关系,并提出了最大后验概率和极大似然译码规则。同时,提到了简单的重复编码和线性码两种编码方法,以及汉明距离在译码中的应用。最后,总结了有噪信道编码定理,指出在信息传输率低于信道容量时,可以通过编码使得错误概率趋于零。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

信道编码定理(香农第二定理)[解决的是可达性的问题]

对信源进行编码,再采用具有统计特性的信道进行传输,信道有噪声,但通过最优化输入信号的分布,可采取某种编码方式,达到信道容量。

信道编码:用于提高信息传输的可靠性

编码信道:信道输入端输出端连接着信道编码器和译码器的信道

信道译码:根据编码规则的相关性来译码

错误概率(P_E):信源发出的消息和到达信宿后发生的错误的概率

错误概率与以下因素有关:信道统计特性(信道传递概率矩阵)、编码方法、译码规则

译码规则

对于没有一个输出符号yj都有一个确定的函数F(yj),使yj对应于唯一一个输入符号xi,则称这样的函数为译码规则

F(yj)=xi;i=1,2,3...r;j=1,2,...s

(输入r个,输出s个的信道,译码规则共有r^s种)

正确概率(\overline{p_e}):收到正确的译码,\overline{p_e}=p[F(y_j)|y_j]=p(x_i|y_j)

错误概率(p_e):上述条件下收到错误的概率,p_e=1-p[F(y_j)|y_j]=1-p(x_i|y_j)

选择译码规则

要使 P_E最小

1.最大后验概率译码规则

选择译码函数F(y_j)=x^*,使其满足p(x^*|y_j)\geq p(x_i|y_j) \rightarrow \forall i

2.极大似然译码规则

选择译码函数F(y_j)=x^*,使其满足p(y_j|x^*)p(x^*)\geq p(y_j|x_i)p(x_i)

当输入符号等概分布时,

若输入为等概分布

 3.费诺不等式(Fano不等式)

表明错误概率与信道疑义度H(X|Y)之间的关系

选择最佳译码规则只能使错误概率Pe有限的减小,无法使Pe任意小

由此引出信道编码方法

1.简单重复编码

重复发送某一码字,确保正确接收。将一码字多次扩展发送,“择多译码”。

随着重复次数n的增大,将会降低平均错误概率Pe

但是随着n的增大信息传输率R要减少

M:表示简单重复编码后的新信源符号个数。n:表示码长(即重复次数)。

R:表示M个信源符号(简单重复编码后的新信源符号),每个符号所携带的最大信息量为logM,现用n个码符号来传输,平均每个码符号所携带的信息量为R。

由此进一步引出香农第二定理,找到一种编码使错误概率充分小,且信息传输率R保持在一定的水平上。

2.线性码

适当增大M和n,可以得到较低的平均错误概率Pe和较好的信息传输速率R

线性码中的冗余位,具有检错和纠正错误的功能(部分)

汉明距离

模二和,表示两个码字之间在相同位上不同码符号的数目的总和

极大似然译码规则可用汉明距离表示为:

选择译码函数:

使其满足: 

即满足:

该准则称为最小距离译码准则

二元对称信道的编码原则

有噪信道编码定理(香农第二定理)

设有一离散无记忆平稳信道,其信道容量为C,只要保持传送的信息传输率R<C,则存在一种编码,当输入序列长度n足够大,可使译码错误概率Pe任意小。

错误概率的上界

对于离散无记忆信道(DMC),平均错误概率Pe为:

其中Er(R)为随机编码指数,又称为可靠性函数,与输入概率分布有关

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华东设计之美

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值