一、题目描述
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
二、测试用例
示例 1:
输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。
示例 2:
输入:height = [4,2,0,3,2,5]
输出:9
三、解题思路
- 基本思路:
对于每个柱子来说,他可以接多少雨水取决于其左边的最高高度、右边柱子的最高高度和自己本身高度。【像这种和左右元素有关系的题目,基本都可以用基于动态规划的 L 、R 序列来做】 - 具体思路:
- 预处理:定义序列 L 和 R ,L[i] 表示第 i 根柱子左边柱子的最高高度,其中 L[0] 初始化为 0【第一个柱子左边没有柱子】,R[i] 表示第 i 根柱子右边柱子的最高高度,其中 R[n-1] 初始化为 0【最后一根柱子右边没有柱子】;定义 sum 变量,用于计算雨水总和,初始化为 0 ;
- 计算 L 和 R 序列:对于第 i 根柱子来说,其左边的最高高度取决于第 i-1 根柱子的高度和第 i-1 根柱子其左边的最高高度,其右边最高高度取决于第 i+1 根柱子的搞得和第 i+1根柱子其右边的最高高度。然后从头计算 L 序列,从尾计算 R 序列。
- 计算 sum :每一根柱子的预计能接取的水量为其左边最高高度和右边最高高度之间的最小值,实际能接取的水量为预计的水量减去自身柱子的高度,小于等于 0 表示接不到水量,大于 0 表示可以接到水量且水量就为二者的差值。
四、参考代码
时间复杂度:
O
(
n
)
\Omicron(n)
O(n)
空间复杂度:
O
(
n
)
\Omicron(n)
O(n)
class Solution {
public:
int trap(vector<int>& height) {
int n=height.size();
int sum=0;
vector<int> L(n),R(n);
L[0]=R[n-1]=0;
for(int i=1;i<n;i++){
L[i]=max(L[i-1],height[i-1]);
R[n-i-1]=max(R[n-i],height[n-i]);
}
for(int i=0;i<n;i++){
sum+=max(min(L[i],R[i])-height[i],0);
}
return sum;
}
};