冒泡排序:
把最大的冒出来。
时间复杂度:O(n^2)
i = arr.length -1; 几次排序
j = arr.length-1-i; 每次排几个
package com.yhc.sort;
import java.util.Arrays;
public class BubbleSort {
public static void main(String[] args) {
int[] arr = {8, -9, 5, 0, 3};
int temp = 0;
//优化
boolean flag = false;
System.out.println(arr.length - 1);
for (int i = 0; i < arr.length - 1; i++) {
for (int j = 0; j < arr.length - 1 - i; j++) {
if (arr[j] > arr[j + 1]) {
flag = true;
temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
System.out.println("第" + (i + 1) + "次排序!");
System.out.println(Arrays.toString(arr));
if (!flag){
break;
}else {
flag = false;
}
}
}
}
选择排序:
选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]-arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1]-arr[n-1]中选取最小值,与arr[1]交换,第三次从arr[2]-arr[n-1]中选取最小值,与arr[2]交换,…,第i 次从arr[i-1]-arr[n-1]中选取最小值,与arr[i-1]交换,…, 第n-1 次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1 次,得到一个按排序码从小到大排列的有序序列。
每次选出最小的,放到数组第i个;
package com.yhc.sort;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class SelectSort {
public static void main(String[] args) {
int[] arr = {101,4,144,1,0};
System.out.println(Arrays.toString(arr));
System.out.println("排序后: ");
select(arr);
System.out.println(Arrays.toString(arr));
}
public static void select(int[] arr){
for (int i = 0; i < arr.length; i++) {
//默认第i个最小
int min = arr[i];
int minIndex = i;
for (int j = i + 1; j < arr.length; j++) {
//改变符号可以决定从小到大,还是从大到小。
if (min > arr[j]){
min = arr[j];
minIndex = j;
}
}
//如果默认的改变了,说明后面有更小的,最小的和第i个换位置。前面i个是已经固定的。
if(minIndex != i){
arr[minIndex] = arr[i];
arr[i] = min;
}
}
}
}
插入排序:
希尔排序:
快速排序:
快速排序(Quicksort)是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
import java.util.Arrays;
public class QiuckSort {
public static void main(String[] args) {
int[] arr = {-9,78,0,23,-567,70};
quick(arr,0,arr.length-1);
System.out.println(Arrays.toString(arr));
}
public static void quick(int[] arr,int left,int right){
int l = left;
int r = right;
//中轴值
int pivot = arr[(left + right)/2];
int temp = 0;
//比中轴值大的放到右边,小的放到左边
while (l < r){
//在pivot 的左边一直找,找到大于等于pivot 值,才退出
while(arr[l] < pivot){
l += 1;
}
//在pivot 的右边一直找,找到小于等于pivot 值,才退出
while(arr[r] > pivot){
r -= 1;
}
//如果l >= r 说明pivot 的左右两的值,已经按照左边全部是
//小于等于pivot 值,右边全部是大于等于pivot 值
if (l >= r){
break;
}
//交换位置
temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
//如果交换完后,发现这个arr[l] == pivot 值相等r--, 前移
if (arr[l] == pivot){
r -= 1;
}
if (arr[r] == pivot){
l += 1;
}
}
//会发生栈溢出。
if ( l == r){
l += 1;
r -= 1;
}
//向左递归
if(left < r){
quick(arr,left,r);
}
//向右递归
if (right > l){
quick(arr,l,right);
}
}
}
归并排序:
package com.yhc.sort;
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] arr = {8,4,5,7,1,3,6,2};
int[] temp = new int[arr.length];
mergeSort(arr,0,arr.length-1,temp);
System.out.println("归并排序 :" + Arrays.toString(arr));
}
//分+合 方法
public static void mergeSort(int[] arr,int left,int right,int[] temp){
if (left < right){
int mid = (left + right) / 2;
//向左递归进行分解
mergeSort(arr,left,mid,temp);
//向右递归进行分解
mergeSort(arr,mid+1,right,temp);
//合并
merge(arr,left,mid,right,temp);
}
}
//合并的方法
/**
*
* @param arr 原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 中转数组 */
public static void merge(int[] arr,int left,int mid,int right,int[] temp){
int i = left; //左边序列初始索引
int j = mid + 1; //右边序列初始索引
int t = 0; //中专数组的当前索引
//1、先把左右有序数据按照规则填充到temp 数组
//直到其中一边处理完毕
while (i <= mid && j <= right){
if (arr[i] <= arr[j]){
temp[t] = arr[i];
t++;
i++;
}else {
temp[t] = arr[j];
t++;
j++;
}
}
//2、 把有剩余一边的数组全部填充到temp
while (i <= mid){
temp[t] = arr[i];
t++;
i++;
}
while (j <= right){
temp[t] = arr[j];
t++;
j++;
}
//3、将temp 数组的元素拷贝到arr
// 并不是每次都拷贝所有
t = 0;
int tempLeft = left;
while (tempLeft <= right){
arr[tempLeft] = temp[t];
t++;
tempLeft++;
}
}
}
基数排序:
package com.yhc.sort;
import java.util.Arrays;
public class RadixSort {
public static void main(String[] args) {
int[] arr = {53,3,542,748,14,214};
radixSort(arr);
}
//基数排序方法
public static void radixSort(int[] arr){
//先得到最大的数,它的位数决定了要排序的次数
int max = arr[0];
for (int i = 0; i < arr.length; i++){
if (max < arr[i]){
max = arr[i];
}
}
int maxLength = (max + "").length();
//定义一个二维数组,表示10个桶,每个桶都是一个一维数组
int[][] bucket = new int[10][arr.length];
//每个桶元素的个数
//默认为零
int[] bucketElementCount = new int[10];
for (int i = 0,n = 1;i < maxLength;i++, n*=10){
//第几轮处理, 第一次是个位,第二次是十位,第三次是百位。。。。
//第 j 个元素
for (int j = 0;j < arr.length ; j++){
//取出每个元素对应位的值,放入对应的桶中
int digitOfElement = arr[j] / n % 10;
// 第几个桶 第几个元素
bucket[digitOfElement][bucketElementCount[digitOfElement]] = arr[j];
bucketElementCount[digitOfElement] ++ ;
}
//按照这个桶的顺序,一位数组的下标一次取出数据放入原来的数组
int index = 0;
//遍历每一桶,并将桶中的数据,放入到原数组
//bucketElementCount 的长度是10.
for (int k = 0; k < bucketElementCount.length; k++){
if(bucketElementCount[k] != 0){
//循环桶,
for (int l = 0; l < bucketElementCount[k]; l++) {
arr[index ++] = bucket[k][l];
}
}
//最后将桶清空,方便下次循环使用
bucketElementCount[k] = 0;
}
System.out.println("第"+(i+1)+"轮=" + Arrays.toString(arr));
}
}
}