斐波那契查找:
斐波那契查找是一种在有序表中高效查找指定元素的算法,比折半查找要复杂一些,主要复杂在要多做不少准备工作。下面看它的工作流程:
1.计算并保存一个斐波那契序列的数组,方便以后取值。数组名记为f,例如f[1]=1,f[2]=1,f[3]=2,f[4]=3,f[5]=5,f[6]=8,f[7]=13,f[8]=21
2.把有序数组的长度扩充到a.length=f[k]-1,k是满足条件的最小值,比如数组长度为13,那么就把它长度扩充到f[8]-1=20,所有在末尾添加的扩充元素都是原数组最后一个元素的复制品
3.找到mid元素,不断进行二分比较,直到找到目标元素为止,这一步的做法与折半查找一模一样,仅仅是计算mid的公式从(low+high)/2改为low+(f[k-1]-1)。
斐波那契查找的理解难点就一个:为什么需要把数组长度扩充到f[k]-1而不是f[k]或者 f[k+1]?这是为了能正确递归计算mid值,看下图可发现 f[k]-1 = (f[k-1] + f[k-2]) - 1 = (f[k-1]-1) + 1 + (f[k-2]-1),中间的1就是我们二分的锚点mid,如果目标在左区,数组长度就缩到(f[k-1]-1),如果在右区,数组长度就缩到 (f[k-2]-1),否则就等于mid完成查找。而(f[k-1]-1)又能拆成(f[k-2]-1)+1+(f[k-3]-1),这样递归分割下去就 能不断的缩小区间直至找到目标。
package com.yhc.research;
import java.util.Arrays;
public class FibonacciSearch {
public static int maxSize = 20;
public static void main(String[] args) {
int[] arr = {1,8,10,89,1000,1234};
System.out.println("index = " + fibSearch(arr,89));
}
//后面会mid = low + F(k-1)-1,所以要先获取斐波那契数列
public static int[] fib(){
//定义一个20为的数列
int[] f = new int[maxSize];
f[0] = 1;
f[1] = 1;
for (int i = 2; i < maxSize; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}
/**
*
* @param arr 数组
* @param key 要查找的值
* @return 返回对应的下标,如果没有返回-1
*/
public static int fibSearch(int[] arr,int key){
int low = 0;
int high = arr.length - 1;
int k = 0;//表示斐波那契分割数值的下标
int mid = 0;
int f[] = fib(); //获取斐波那契数列
//获取斐波那契分割数值的下标
while(high > f[k] - 1){
k++;
}
int[] temp = Arrays.copyOf(arr,f[k]);
for (int i = high+1; i < temp.length; i++) {
temp[i] = arr[high];
}
//准备完成,使用循环来找到 key
while(low <= high){
mid = low + f[k-1] - 1;
if (key < temp[mid]){
high = mid - 1;
k--;
}else if(key > temp[mid]){
low = mid + 1;
k -= 2;
}else{
//找到,
if (mid <= high){
return mid;
}else {
return high;
}
}
}
return -1;
}
}