斐波那契查找

斐波那契查找:
斐波那契查找是一种在有序表中高效查找指定元素的算法,比折半查找要复杂一些,主要复杂在要多做不少准备工作。下面看它的工作流程:
1.计算并保存一个斐波那契序列的数组,方便以后取值。数组名记为f,例如f[1]=1,f[2]=1,f[3]=2,f[4]=3,f[5]=5,f[6]=8,f[7]=13,f[8]=21
2.把有序数组的长度扩充到a.length=f[k]-1,k是满足条件的最小值,比如数组长度为13,那么就把它长度扩充到f[8]-1=20,所有在末尾添加的扩充元素都是原数组最后一个元素的复制品
3.找到mid元素,不断进行二分比较,直到找到目标元素为止,这一步的做法与折半查找一模一样,仅仅是计算mid的公式从(low+high)/2改为low+(f[k-1]-1)。
斐波那契查找的理解难点就一个:为什么需要把数组长度扩充到f[k]-1而不是f[k]或者 f[k+1]?这是为了能正确递归计算mid值,看下图可发现 f[k]-1 = (f[k-1] + f[k-2]) - 1 = (f[k-1]-1) + 1 + (f[k-2]-1),中间的1就是我们二分的锚点mid,如果目标在左区,数组长度就缩到(f[k-1]-1),如果在右区,数组长度就缩到 (f[k-2]-1),否则就等于mid完成查找。而(f[k-1]-1)又能拆成(f[k-2]-1)+1+(f[k-3]-1),这样递归分割下去就 能不断的缩小区间直至找到目标。

在这里插入图片描述

package com.yhc.research;

import java.util.Arrays;

public class FibonacciSearch {
    public static int maxSize = 20;
    public static void main(String[] args) {
        int[] arr = {1,8,10,89,1000,1234};
        System.out.println("index = " + fibSearch(arr,89));
    }

    //后面会mid = low + F(k-1)-1,所以要先获取斐波那契数列
    public static int[] fib(){
        //定义一个20为的数列
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    /**
     *
     * @param arr 数组
     * @param key 要查找的值
     * @return 返回对应的下标,如果没有返回-1
     */
    public static int fibSearch(int[] arr,int key){
        int low = 0;
        int high = arr.length - 1;
        int k = 0;//表示斐波那契分割数值的下标
        int mid = 0;
        int f[] = fib(); //获取斐波那契数列

        //获取斐波那契分割数值的下标
        while(high > f[k] - 1){
            k++;
        }

        int[] temp = Arrays.copyOf(arr,f[k]);
        for (int i = high+1; i < temp.length; i++) {
            temp[i] = arr[high];
        }

        //准备完成,使用循环来找到 key
        while(low <= high){
            mid = low + f[k-1] - 1;
            if (key < temp[mid]){
                high = mid - 1;
                k--;
            }else if(key > temp[mid]){
                low = mid + 1;
                k -= 2;
            }else{
                //找到,
                if (mid <= high){
                    return mid;
                }else {
                    return high;
                }
            }
        }
        return -1;
    }

}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值