Pandas 关于pandas.DataFrame.fillna 填充Nan失败的问题

如果单独是

>>> df.fillna(0)
>>> print(df) # 可以看到未发生改变


>>> print(df.fillna(0)) # 如果直接打印是可以看到填充进去了
>>> print(df) # 但是再次打印就会发现没有了,还是Nan

将其Nan全部填充为0,这时再打印的话会发现根本未填充,这是因为没有加上参数inplace参数。

一定要将inplace = True加入参数,这样才能让源数据发生改变并保存。

>>> df.fillna(0, inplace = True)
>>> print(df) #可以看到发生改变

 

如果在使用DataFrame的fillna方法填充0后,数据仍然包含NaN值,可能是因为fillna方法没有成功地将所有的NaN值替换为0。这种情况下,有几种可能的原因和解决方法: 1)检查数据类型:首先,确保要填充的列的数据类型是数值型(如整数或浮点数),因为fillna方法只能用于数值型列。如果列的数据类型是字符串或其他类型,并且包含NaN值,fillna方法不会生效。可以使用astype方法将列的数据类型转换为数值型,然后再尝试使用fillna方法。 2)检查缺失值位置:确认NaN值的确实位置,可能是在填充之前没有正确地定位到缺失值。可以使用isna方法检查DataFrame中的NaN值,并观察其所在的行和列。然后,可以使用loc或iloc方法来访问和修改具体位置上的值。 3)指定inplace参数:确保在调用fillna方法时,指定了inplace参数为True,以便直接在原始DataFrame上修改数据,而不是返回一个新的副本。如果没有指定inplace参数或设置为False,默认会返回一个新的填充后的DataFrame。 以下是一个示例代码,演示如何使用fillna方法填充0并处理NaN值: ```python import pandas as pd # 创建一个包含NaN值的DataFrame示例 df = pd.DataFrame({'A': [1, 2, np.nan, 4, 5], 'B': [6, np.nan, 8, 9, 10]}) # 使用fillna方法填充0,并指定inplace参数为True df.fillna(0, inplace=True) # 检查是否还存在NaN值 print(df.isna().sum()) ``` 如果仍然存在NaN值,可能需要进一步检查数据和代码,确定出现NaN值的原因,并采取适当的处理方法。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值