dithering

使用GPU的dithering功能,消除RGB565带来的色阶问题,需要GPU的输入是RGB888的颜色,不然dithering无法起作用
CT image compression (a) Implement the simplified DCT compression process above for n = 2, 4, and 8 and apply it to the attached image. Show the reconstructed images for these three different cases. [3 images] Compute the PSNR values of the three reconstructed images and discuss what the PSNR value means here. (b) Use the same process in (a) with image transformed to YIQ color model and show the reconstructed image in RGB space. [3 images] Compute the PSNR values of the three reconstructed images and discuss what the PSNR value means here. Dithering 2. Dithering (30%) Convert the image cat2_gray.png to binary (black and white) image with different methods of dithering, show the results, and make some comparison with the results. (a) Apply noise (random) dithering on the provided image and show the result. [1 image] (b) Apply average dithering on the provided image and show the result. [1 image] (c) Apply error diffusion dithering (Floyd-Steinberg algorithm) on the provided image and show the result. [1 image] Image Interpolation Implement the image interpolation function to upsample an image to four times the original width and height. Implement the following two different interpolation methods and show the 4× upsampled images. (a) Apply nearest-neighbor interpolation on the low resolution image, cat3_LR.png, and compute the PSNR with the original high resolution image, cat3_HR.png. [1 image] (b) Apply bilinear interpolation on the low resolution image and compute the PSNR with the high resolution image. [1 image] (c) Apply bicubic interpolation on the low resolution image and compute the PSNR with the high resolution image. [1 image]
### Matlab 实现 Dithering 抖动算法 在图像处理领域,抖动(Dithering)是一种用于减少颜色量化误差的技术。通过将量化误差扩散到相邻像素,可以在降低色彩深度的同时保持视觉上的细节和渐变效果。 #### Floyd-Steinberg 错误扩散法 一种常见的错误扩散方法是Floyd-Steinberg算法,在此过程中,当前像素的颜色被四舍五入至最接近的可用调色板值,并且产生的误差按照特定的比例分配给周围的四个未处理过的邻居像素[^1]: ```matlab function outputImage = floyd_steinberg_dither(inputImage) % 将输入图像转换为灰度图并归一化 grayImg = rgb2gray(im2double(inputImage)); [rows, cols] = size(grayImg); ditheredImg = zeros(rows,cols); for i=2:rows-1 for j=2:cols-1 oldPixel = grayImg(i,j); newPixel = round(oldPixel); quantError = oldPixel - newPixel; grayImg(i,j+1) = grayImg(i,j+1) + (7/16)*quantError; grayImg(i+1,j-1) = grayImg(i+1,j-1) + (3/16)*quantError; grayImg(i+1,j) = grayImg(i+1,j) + (5/16)*quantError; grayImg(i+1,j+1) = grayImg(i+1,j+1) + (1/16)*quantError; ditheredImg(i,j)=newPixel; end end imshow(ditheredImg); end ``` 这段代码实现了基本的Floyd-Steinberg抖动过程,其中`inputImage`是要进行抖动操作的原始彩色或灰度图片矩阵;最终得到二值化的输出图像`outputImage`显示出来。 对于更复杂的场景或者不同的需求,还可以考虑其他类型的抖动技术如有序抖动(Ordered Dither),它利用预定义模式来决定哪些位置应该增加噪声而不是简单地传播计算出来的误差[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值