跟我一起学Python数据处理(122/127):Python编程常见陷阱深度剖析
大家好!在之前的学习中,我们对Python有了一定的了解。但在实际编程过程中,总会遇到一些让人头疼的问题,就像走进了一个个“陷阱”。今天,咱们就继续深入探讨Python编程里那些常见的陷阱,一起学习进步,让大家在Python编程的道路上少走弯路。
一、变量赋值与对象副本
在Python里处理列表和字典这类数据时,赋值操作可有点“门道”。大家要知道,当我们把一个列表或字典赋值给一个新变量时,新变量和旧变量在内存里其实指向的是同一个对象。这就好比两个人拿着同一把钥匙,打开的是同一个房间的门。只要其中一个人对房间里的东西进行了改动,另一个人打开门看到的也是改动后的样子。
给大家举个例子:
list1 = [1, 2, 3]
list2 = list1
list1.append(4)
print(list2)
运行这段代码,你会发现list2
也变成了[1, 2, 3, 4]
,这就是因为list1
和list2
在内存中指向同一个列表对象。
那如果我们只想改变其中一个,或者想要创建一个新的对象作为副本该怎么办呢?这时候就要用到copy
方法啦。copy
方法就像是给这个对象重新配了一把钥匙,打开的是一个和原来一模一样,但又相互独立的新房间。对新房间的改动不会影响到原来的房间。
list3 = [5, 6, 7]
list4 = list3.copy()
list3.append(8)
print(list3)
print(list4)
在这段代码中,list3
和list4
一开始内容相同,但list3
调用append
方法添加元素后,list4
并没有受到影响。
二、默认函数参数的“小秘密”
在Python函数里设置默认参数的时候,有个容易被忽略的地方。看下面这个例子:
def add_item(lst=[]):
lst.append('new item')
return lst
很多人可能觉得每次调用这个函数,都会返回一个只包含['new item']
的新列表。但实际运行一下就会发现:
print(add_item())
print(add_item())
输出结果是:
['new item']
['new item', 'new item']
这是因为默认参数在脚本第一次解释的时候就被声明了,后续调用函数如果不传入新的参数,就会在原来的默认参数对象上进行操作。
那怎么解决这个问题呢?可以像下面这样改写函数:
def add_item(lst=None):
if lst is None:
lst = []
lst.append('new item')
return lst
现在再调用这个函数:
print(add_item())
print(add_item())
输出结果就符合我们的预期了:
['new item']
['new item']
三、Python作用域与变量命名
Python的作用域规则和我们想象的可能不太一样。在函数里定义的变量,出了这个函数就“失效”了,外部是访问不到的。比如说:
def test_scope():
num = 10
print(num)
运行这段代码,会报错NameError: name 'num' is not defined
,因为num
是在test_scope
函数内部定义的,函数外部无法访问。
另外,变量命名也有讲究。如果不小心用了和内置函数或方法一样的名字,那可就麻烦了。比如:
sum = 10
result = sum([1, 2, 3])
运行这段代码会报错TypeError: 'int' object is not callable
,因为这里把内置函数sum
重新赋值为整数10
,之后再调用sum
函数就不行了。所以在命名变量的时候,一定要避开这些内置的名称,不然调试起来可就费大劲了。
四、定义对象与修改对象的区别
在Python中,定义新对象和修改老对象的方式是有区别的。来看下面这个函数:
def increment():
num += 1
return num
运行这个函数会报错UnboundLocalError: local variable 'num' referenced before assignment
。这是因为在使用num
之前,没有对它进行声明。如果我们在函数里先定义num
,就没问题了:
def increment():
num = 0
num += 1
return num
虽然这个例子有些简单,但它告诉我们,在修改变量之前,一定要先声明变量,哪怕是用类似+=
这样看起来像赋值的修改操作,也不能忽略声明这一步。
写作不易,希望这篇文章能帮助大家更好地理解Python编程中的这些陷阱。如果文章对你有帮助,麻烦各位读者点赞、评论支持一下,也欢迎大家关注我的博客,后续还会有更多Python数据处理相关的内容分享,让我们一起在编程的道路上不断前行!