Machine learning
y430
这个作者很懒,什么都没留下…
展开
-
【机器学习算法总结】RF(随机森林)
目录1. 集成学习概念2. Boosting流程3. Bagging流程4. 结合策略(平均法,投票法,学习法)平均法投票法学习法5. 随机森林思想6. 随机森林的推广extra treesTotally Random Trees Embedding7. 优缺点优点缺点8. 主要调参的参数9. sklearn.ensemble...原创 2018-12-19 21:04:38 · 7140 阅读 · 1 评论 -
【机器学习算法总结】XGBoost
目录1. XGBoost2.CART树2.1 优缺点2.2 分裂依据2.2.1 分类2.2.2 回归2.3总结2.4 参考3. 算法原理3.1 定义树的复杂度3.2 打分函数计算示例3.3 分裂结点3.3.1 贪心法3.3.2 近似算法3.3.3 分布式加权直方图算法(Weighted Quantile Sketch)4. 损失函数...原创 2018-12-24 19:33:54 · 6200 阅读 · 0 评论 -
5种五种回归模型及其优缺点
参考资料:https://mp.weixin.qq.com/s/mr83EK24S94b_UUlecyqlA 线性回归对异常值非常敏感 多项式拟合如果指数选择不当,容易过拟合。 岭回归标准线性或多项式回归在特征变量之间存在很高的共线性(high collinearity,比如变量x1与x2之间存在函数关系)的情况下将失败。共线性是自变量之间存在近似线性关系,你所...转载 2018-08-10 10:43:59 · 35321 阅读 · 0 评论 -
sklearn常用函数的参数详解
参考资料:https://blog.csdn.net/column/details/16415.html KNNsklearn.neighbors.KNeighborsClassifierKNneighborsClassifier参数说明:n_neighbors:默认为5,就是k-NN的k的值,选取最近的k个点。 weights:默认是uniform,参数可以是unifo...转载 2018-08-13 13:55:48 · 5479 阅读 · 0 评论 -
【机器学习算法总结】GBDT
目录1、GBDT2、GBDT思想3、负梯度拟合4、损失函数4.1、分类4.2、回归5、GBDT回归算法6、GBDT分类算法6.1、二分类6.2、多分类7、正则化8、RF与GBDT之间的区别与联系9、优缺点优点缺点10、应用场景11、主要调参的参数12、sklearn.ensemble.GradientBoostingClass...原创 2018-12-21 18:34:16 · 24844 阅读 · 2 评论