WIN10 docker部署TF模型

WIN10 Docker tensorflow serving

重要参考:https://www.youtube.com/watch?v=uabNEQlpGM8

下载

docker 

百度网盘,不是最新版 https://oomake.com/download/docker-windows

最新版不需登陆,但是对系统版本有要求 https://blog.csdn.net/tangyaya8/article/details/88604500

docker -toolbox

可用 http://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/

入门

验证是否安装成功,在PowerShell执行命令docker -v,查看能否输出docker版本

 

docker run hello-world

切换至linux

全流程

# Download the TensorFlow Serving Docker image and repo
docker pull tensorflow/serving
# docker pull tensorflow/serving:latest-gpu

# clone the TensorFlow Serving repo:
mkdir tmp/tfserving
cd /tmp/tfserving
git clone https://github.com/tensorflow/serving

# 设置路径
Set-Variable -Name "TESTDATA" -Value "$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata"
$TESTDATA

# 运行:
docker run -t --rm -p 8506:8501 -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" -e MODEL_NAME=half_plus_two tensorflow/serving

# 查看在运行的容器:
docker container ls

# 预测:
curl -d '{"instances": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict

# if预测失败:
Get-Alias curl
Remove-Item alias:curl
# 预测:
curl -d '{\"instances\": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict
# return:
{"predictions":[2.5,3.0,4.5]}
# 预测:
curl -d '{\"instances\": [4.0, 10.0, 25.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict

# stop容器:先查看容器的ID,然后stop ID
docker container ls
docker stop ID

# 重启容器:
docker run -t -p 8506:8501 -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" -e MODEL_NAME=half_plus_two tensorflow/serving

多模型多版本或更新版本

# 版本更新:
# 首先,查看容器:
docker ps -a
# 然后,删除之前版本的容器:
docker rm ID
# 然后,设置路径
Set-Variable -Name "TESTDATA" -Value "$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata"
# 然后,启动
docker run -p 8508:8500 -p 8509:8501 -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" -v "$TESTDATA/saved_model_half_plus_three:/models/half_plus_three" -v "$TESTDATA/models.config:/models/models.config" -t tensorflow/serving --model_config_file=/models/models.config
# 然后:
Remove-Item alias:curl
# 最后,预测:
curl -d '{\"instances\": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict

 

docker pull tensorflow/serving
git clone https://github.com/tensorflow/serving
# Location of demo models
TESTDATA="$(pwd)/serving/tensorflow_serving/servables/tensorflow/testdata"

# Start TensorFlow Serving container and open the REST API port
docker run -t --rm -p 8508:8501 \
    -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" \
    -e MODEL_NAME=half_plus_two \
    tensorflow/serving

# Query the model using the predict API
curl -d '{\"instances\": [1.0, 2.0, 5.0]}' -X POST http://localhost:8501/v1/models/half_plus_two:predict

成功返回数据

共享磁盘

 

 

输入URL,返回下图

删除image镜像

参考:https://blog.csdn.net/flydreamzhll/article/details/80900509

首先删除image相关的容器

如果出现无法移除,说明该container正在运行中(运行docker ps查看),先将其关闭:

docker stop 117843ade696

然后删除image

docker rmi ed9c93747fe1

 

 

报错

问题1(已解决)

参考:https://blog.csdn.net/weixin_34242658/article/details/91705907

cd "C:\Program Files\Docker\Docker"
DockerCli.exe -SwitchDaemon

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值