参考
清华镜像anaconda第三方库文件 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/
window10上安装python+CUDA+CuDNN+TensorFlow https://www.cnblogs.com/touch-skyer/p/8367706.html
Win10 Anaconda下TensorFlow-GPU环境搭建详细教程(包含CUDA+cuDNN安装过程) https://www.baidu.com/link?url=fJ5P3mDdJxPJPBMMaMXI6v46fW-leyqoYE3FYjm-BbQoEqybCOtkaINnTnpGmyrtYTfnwBKK3xYAk5jSPIA0L_&wd=&eqid=af8a231f00004d04000000065d908be5
下载安装anaconda
anaconda3-5.2.0:conda 4.5.4,python 3.6.5
anaconda python 版本对应关系
参考:https://blog.csdn.net/yuejisuo1948/article/details/81043823
下载anaconda3
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
anaconda安装过程中,记得勾选将anaconda自动加入环境变量中。
验证anaconda3
anaconda安装完毕后,打开cmd输入命令,验证是否安装成功。
安装tensorflow-gpu
conda install tensorflow-gpu
将安装 tensorflow-gpu-1.12.0,cudnn-7.1.4-cuda-9.0_0;
conda将从4.5.4-py36_0升级到4.5.12-py36_0
安装完成后,验证tensorflow是否安装成功:
安装更高版本cuda(暂无必要)
如果想安装更高版本的cuda,可参考:
https://blog.csdn.net/qq_35029531/article/details/81912317
安装keras-gpu
conda install keras-gpu
测试显卡的计算能力
参考:https://www.cnblogs.com/learnMoreEveryday/p/7860342.html
打开jupyter notebook,运行下面的代码:
import tensorflow as tf
import numpy as np
# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300
# 构造一个线性模型
#
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b
# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# 初始化变量
init = tf.initialize_all_variables()
# 启动图 (graph)
sess = tf.Session()
sess.run(init)
# 拟合平面
for step in range(0, 201):
sess.run(train)
if step % 20 == 0:
print (step, sess.run(W), sess.run(b))
# 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]
运行代码后,可以从cmd窗口看到,显卡的计算能力为6.1:
安装虚拟环境