Deep learning
y430
这个作者很懒,什么都没留下…
展开
-
【NLP实践-Task4 传统机器学习】朴素贝叶斯 & SVM & LDA文本分类
目录朴素贝叶斯原理公式朴素贝叶斯的优点朴素贝叶斯的缺点利用朴素贝叶斯进行文本分类SVM简介利用SVM模型进行文本分类文本特征提取文本特征表示归一化处理文本分类pLSA、共轭先验分布、LDA简介主题模型简介pLSA共轭先验分布定义及公式LDALDA介绍LDA生成过程LDA整体流程LDA文本分类获取训练矩阵和单词...原创 2019-03-08 14:09:13 · 1568 阅读 · 1 评论 -
【NLP实践-Task1 数据集探索】THUCNews&IMDB&常用评价指标
Tensorflow.keras目录1、THUCNews1.1 数据集下载及介绍1.2 预处理1.3 搭建CNN模型1.3.1 模型代码1.3.2 模型结构1.4 训练与验证1.4.1 代码1.4.2 开始训练1.4.3 使用tensorboard查看训练集的误差曲线与准确率曲线1.4.4 测试2、IMDB2.1 下载数据2.2 探索数据...原创 2019-03-02 14:51:20 · 1817 阅读 · 0 评论 -
win10安装PyTorch 1.0
方法1打开官网https://pytorch.org/网站会自动检测本机配置:安装打开终端,按官网所示,输入命令:conda install pytorch torchvision -c pytorch测试是否安装成功import torch查看PyTorch版本print(torch.__version__)方法2http...原创 2019-03-05 09:14:41 · 3639 阅读 · 0 评论 -
【NLP实践-Task3 特征选择】TF-IDF&互信息
目录TF-IDF原理TF-IDF代码方法1:使用TfidfTransformer方法2:使用TfidfVectorizer(推荐)互信息的原理点互信息PMI互信息MI对特征矩阵使用互信息进行特征筛选sklearn.metrics.mutual_info_scoresklearn.feature_selection.mutual_info_classif参...原创 2019-03-07 11:56:25 · 1837 阅读 · 0 评论 -
【NLP实践-Task7 卷积神经网络】Text-CNN文本分类
目录卷积运算的基本概念稀疏权重参数共享等变表示一维卷积运算二维卷积运算三维卷积运算反卷积原理tf.nn.conv2d_transpose池化运算的基本概念介绍种类Text-CNN原理模型架构介绍输入层卷积层全连接层输出层Text-CNN文本分类实战数据集预处理模型结构及代码训练参考卷积运算的...原创 2019-03-15 18:09:55 · 2135 阅读 · 0 评论 -
【NLP实践-Task9 Attention原理 】attention & HAN & 文本分类实战
目录Attention原理背景Encoder-Decoder框架Soft Attention模型Attention机制的本质思想Self Attention模型Attention机制的应用HAN的原理(Hierarchical Attention Networks)Attention文本分类实战训练结果参考Attention原理背景 ...原创 2019-03-19 12:42:56 · 1378 阅读 · 0 评论 -
【NLP实践-Task6 简单神经网络】文本表示&fasttext
目录文本表示one-hot介绍one-hot在提取文本特征上的应用优缺点分析sklearn实现one hot encodeword2vecCBOW模型的理解CBOW模型流程举例fasttextfasttext介绍应用场景优点原理fasttext与word2vec对比fasttext文本分类实战参考文本表示one-hot介绍...原创 2019-03-13 16:27:36 · 537 阅读 · 0 评论 -
【NLP实践-Task8 循环神经网络】LSTM详解 & Text-RNN文本分类 & RCNN原理
目录RNN基础循环神经网络(Recurrent Neural Networks)RNN的训练方法——BPTT算法(back-propagation through time)长期依赖(Long-Term Dependencies)问题LSTM(long short-term memory)LSTM 的核心思想逐步理解 LSTMLSTM 的变体GRU(Gated ...原创 2019-03-17 09:33:12 · 7960 阅读 · 1 评论 -
【NLP实践-Task10 BERT】Transformer & BERT
目录Transformer原理Transformer总体结构Self-AttentionMulti-Headed AttentionPositional EncodingLayer normalizationDecoder层MaskPadding MaskSequence mask输出层BERT的原理1. Masked LM (MLM)2. ...原创 2019-03-23 01:11:19 · 1812 阅读 · 1 评论 -
【NLP实践-Task5 神经网络基础】深度学习基础
目录前馈神经网络反向传播输入/隐藏/输出层隐藏单元(激活函数)ReLU(修正线性单元)Sigmoid/ tanhSoftmax激活函数对比sigmoidtanhreluleaky relu激活函数选取准则损失函数损失函数的非凸性常用的损失函数0-1损失绝对值损失log对数损失函数平方损失函数指数损失函数Hin...原创 2019-03-12 14:02:25 · 741 阅读 · 0 评论 -
【NLP实践-Task2 特征提取】文本处理&语言模型&文本矩阵化
目录基本文本处理技能分词的概念正向最大匹配法逆向最大匹配法双向最大匹配法词、字符频率统计语言模型语言模型中unigram、bigram、trigram的概念文本矩阵化分词新词识别自定义词典关键词提取去除停用词构造词表文档向量化参考基本文本处理技能 目前有三大主流分词方法:基于字符串匹配的分词方法、基于理解的分词...原创 2019-03-05 19:04:54 · 1187 阅读 · 0 评论 -
python的opencv安装
pip install opencv-python原创 2018-12-20 09:14:47 · 204 阅读 · 0 评论 -
受限玻尔兹曼机RBM最通俗易懂的教程
参考资料:https://blog.csdn.net/u013631121/article/details/76652647?utm_source=blogxgwz转载 2018-10-18 20:40:58 · 418 阅读 · 0 评论 -
DL优化算法总结
批量梯度下降(Batch gradient descent) 批量梯度下降每次学习都使用整个训练集来更新模型参数,即: θ=θ−η⋅∇θJ(θ) 每次使用全部训练集样本计算损失函数的梯度,然后使用学习速率朝着梯度相反方向去更新模型的...转载 2019-03-12 11:21:50 · 3272 阅读 · 0 评论