数分常见面试问题(持续更新)

目录

一 、数据异动问题

问题1、假如一直关心的指标(完播率)在某个时间点下跌很多,怎么分析呢?

问题2、业务发现T-1的GMV下降了10%,如何去做分析?

1)数据验证

2)多维下钻分析

3)归因分析(找出核心原因)

(1)外部因素        

(2)内部因素        

4)假设验证(用数据验证猜测)

5)输出结论与建议


一 、数据异动问题

问题1、假如一直关心的指标(完播率)在某个时间点下跌很多,怎么分析呢?

首先明确是一个因果推断问题,排除周期(是否有季节性或周期性因素)、外部(相关政策和竞对会活动)、其他指标是否变动(交易量、活跃用户数)

例如某内容产品,考虑业务场景,将用户分为创作者和阅读者,猜想与变动指标相关的场景(例如5s完播率),通过拆解维度定位用户群观察是否有共性,进而拆解相关指标,例如是否引起其它相关指标(播放频率)也下降。如果完播率和频率都下降,可能说明用户需求开始减少。如果频率没有下降,说明推荐内容不合适,进一步观察是内容不足(用户找不到想要的)还是推荐算法的问题(推荐内容不是用户喜欢的)

问题2、业务发现T-1的GMV下降了10%,如何去做分析?

1)数据验证

  1. 明确数据准确性,数据上传有没有问题,数据口径是否一致;
  2. 是否存在异常订单,大规模退货(考虑做一个退货分析)
  3. 对比上个周期如何,如果上个周期也下降了10%左右,那么考虑是周期波动,将时间线拉长,看看前几个周期的波动;确认是否为季节性波动或节假日影响

2)多维下钻分析

  1. 按时间维度拆解:(趋势分析)是什么时间段下降了,看小时/时段的趋势,平时和周末是否有区别;
  2. 按流量渠道拆解:(渠道分析)各渠道的gmv贡献占比,哪里下降的最多;(漏斗分析)根据业务公式GMV=UV*CVR*AOV,看访客数、转化率、客单价是否下降
  3. 按商品品类拆解:(头部产品表现)头部商品GMV是否下降?是否有缺货、降价调整?(品类结构)商品的品类结构如何?高GMV商品是否有影响?(促销活动)是否存在秒杀/满减促销活动
  4. 按用户群体拆解:(新老用户对比)新老用户的GMV如何?(RFM模型)高价值用户消费是否减少?(用户流失分析)是否有大量用户未完成订单支付?
  5. 按地域拆解:(地域分析+物流问题)是否存在某些地区GMV下降最为明显

3)归因分析(找出核心原因)

(1)外部因素        
  • 竞品动作:竞争对手是否推出促销/降价活动
  • 行业趋势:整体行业的GMV是否呈现下降趋势(政策、经济影响)
  • 特殊事件:服务器宕机、支付接口故障、负面新闻影响品牌形象
(2)内部因素        
  • 营销活动变化:是否大促结束GMV回落?优惠券/满减调整,导致用户购买意愿降低
  • 供应链/库存问题:热销商品缺货?物流延迟问题?
  • 产品技术问题:关键页面加载慢?支付失败率上升?
  • 价格策略调整:核心商品涨价?会员折扣力度减弱?

4)假设验证(用数据验证猜测)

针对可能的归因,进行数据验证

如果是流量问题>>检查各渠道的流量变化,对比转化率

如果是转化率问题>>分析用户行为路径,加购—>支付环节转化率

如果是商品问题>>查看TOP10商品库存、价格、销量变化

如果是技术问题>>检查支付成功率、页面加载时间等埋点数据

5)输出结论与建议

1、分析报告

  • 问题描述:GMV下降10%,主要发生在XX时段/XX品类/XX渠道
  • 核心原因:某头部商品缺货导致GMV下降10%或付费广告ROI下降导致流量减少
  • 数据支持:趋势图、销售对比图、漏斗分析

2、解决方案

  • 短期修复:补货,优化广告投放
  • 长期优化:优化库存预警机制、提升用户留存策略

3、监控机制

  • 建立GMV异常波动预警(如单日下降>5%自动触发分析)
  • 关键指标监控看板(流量、转化率、库存等)

### 数据分析实习面试中机器学习和SQL相关问题及准备资料 数据分析实习面试通常会涉及机器学习和SQL的基础知识,以下是针对这两个领域的问题和准备建议。 --- #### 机器学习相关问题及准备资料 1. **迁移学习的应用场景** 迁移学习是一种将已有模型的知识迁移到新任务中的技术。在面试中可能会被问到为什么选择迁移学习以及其适用场景。例如,在视网膜图像分类项目中,使用迁移学习可以减少训练时间和数据需求[^1]。准备时需要熟悉迁移学习的基本原理、优缺点以及实际案例。 2. **传统机器学习算法的原理** 面试官可能要求解释一些传统机器学习算法,如SVM、逻辑回归等。以SVM为例,需清楚其目标是最小化分类间隔,并能处理线性和非线性分类问题[^2]。此外,PCA(主成分分析)的用途及其在降维中的作用也是常见考点。 3. **模型评估指标** 熟悉模型评估的常用指标,如准确率、召回率、F1分数等。了解这些指标在不同业务场景下的意义,例如在脑电信号分类中,召回率可能比准确率更重要[^1]。 4. **超参数调优** 掌握网格搜索(Grid Search)或随机搜索(Random Search)等超参数调优方法,并能够解释其优缺点。同时,了解Scikit-learn中`test_train_split`和`StandardScaler`的功能也非常重要。 --- #### SQL相关问题及准备资料 1. **基础查询与表操作** 面试中常会考察SQL的基础查询能力。例如,从`easy_website_visit`表中提取日期和访问量并计算总访问量。可以通过以下SQL语句实现: ```sql SELECT SUBSTRING(data_content, 1, 8) AS date, CAST(SUBSTRING(data_content, 9, 4) AS INT) AS visit_count FROM easy_website_visit; ``` 此外,还需熟悉聚合函数(如`SUM`、`AVG`)、分组查询(`GROUP BY`)等基本操作[^3]。 2. **复杂查询设计** 面试官可能会要求设计复杂的SQL查询,例如根据用户行为数据生成报表。这需要掌握子查询、连接(JOIN)等高级功能。以下是一个示例: ```sql SELECT u.user_id, COUNT(o.order_id) AS total_orders, SUM(o.amount) AS total_spent FROM users u LEFT JOIN orders o ON u.user_id = o.user_id GROUP BY u.user_id; ``` 3. **性能优化** 在大数据场景下,SQL查询的性能优化至关重要。了解索引的作用、如何避免全表扫描以及如何通过EXPLAIN分析查询计划是加分项[^3]。 4. **实际业务问题建模** 结合具体业务场景设计SQL查询。例如,在食堂座位规划问题中,可以通过SQL计算每小时就餐人数并进行座位分配[^5]。 --- #### 综合准备建议 - **理论结合实践**:除了掌握理论知识,还需要通过实际项目积累经验。例如,使用Python和SQL完成数据分析任务,记录项目细节以便面试中展示。 - **模拟面试**:多参加模拟面试,熟悉常见的提问方式和答题思路。特别注意反问环节,通过提问展现对岗位的兴趣和学习态度[^4]。 - **资源推荐**: - 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》 - 《SQL必知必会》 - LeetCode、HackerRank上的SQL练习题 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值