目录
问题1、假如一直关心的指标(完播率)在某个时间点下跌很多,怎么分析呢?
一 、数据异动问题
问题1、假如一直关心的指标(完播率)在某个时间点下跌很多,怎么分析呢?
首先明确是一个因果推断问题,排除周期(是否有季节性或周期性因素)、外部(相关政策和竞对会活动)、其他指标是否变动(交易量、活跃用户数)
例如某内容产品,考虑业务场景,将用户分为创作者和阅读者,猜想与变动指标相关的场景(例如5s完播率),通过拆解维度定位用户群观察是否有共性,进而拆解相关指标,例如是否引起其它相关指标(播放频率)也下降。如果完播率和频率都下降,可能说明用户需求开始减少。如果频率没有下降,说明推荐内容不合适,进一步观察是内容不足(用户找不到想要的)还是推荐算法的问题(推荐内容不是用户喜欢的)
问题2、业务发现T-1的GMV下降了10%,如何去做分析?
1)数据验证
- 明确数据准确性,数据上传有没有问题,数据口径是否一致;
- 是否存在异常订单,大规模退货(考虑做一个退货分析)
- 对比上个周期如何,如果上个周期也下降了10%左右,那么考虑是周期波动,将时间线拉长,看看前几个周期的波动;确认是否为季节性波动或节假日影响
2)多维下钻分析
- 按时间维度拆解:(趋势分析)是什么时间段下降了,看小时/时段的趋势,平时和周末是否有区别;
- 按流量渠道拆解:(渠道分析)各渠道的gmv贡献占比,哪里下降的最多;(漏斗分析)根据业务公式GMV=UV*CVR*AOV,看访客数、转化率、客单价是否下降
- 按商品品类拆解:(头部产品表现)头部商品GMV是否下降?是否有缺货、降价调整?(品类结构)商品的品类结构如何?高GMV商品是否有影响?(促销活动)是否存在秒杀/满减促销活动
- 按用户群体拆解:(新老用户对比)新老用户的GMV如何?(RFM模型)高价值用户消费是否减少?(用户流失分析)是否有大量用户未完成订单支付?
- 按地域拆解:(地域分析+物流问题)是否存在某些地区GMV下降最为明显
3)归因分析(找出核心原因)
(1)外部因素
- 竞品动作:竞争对手是否推出促销/降价活动
- 行业趋势:整体行业的GMV是否呈现下降趋势(政策、经济影响)
- 特殊事件:服务器宕机、支付接口故障、负面新闻影响品牌形象
(2)内部因素
- 营销活动变化:是否大促结束GMV回落?优惠券/满减调整,导致用户购买意愿降低
- 供应链/库存问题:热销商品缺货?物流延迟问题?
- 产品技术问题:关键页面加载慢?支付失败率上升?
- 价格策略调整:核心商品涨价?会员折扣力度减弱?
4)假设验证(用数据验证猜测)
针对可能的归因,进行数据验证
如果是流量问题>>检查各渠道的流量变化,对比转化率
如果是转化率问题>>分析用户行为路径,加购—>支付环节转化率
如果是商品问题>>查看TOP10商品库存、价格、销量变化
如果是技术问题>>检查支付成功率、页面加载时间等埋点数据
5)输出结论与建议
1、分析报告
- 问题描述:GMV下降10%,主要发生在XX时段/XX品类/XX渠道
- 核心原因:某头部商品缺货导致GMV下降10%或付费广告ROI下降导致流量减少
- 数据支持:趋势图、销售对比图、漏斗分析
2、解决方案
- 短期修复:补货,优化广告投放
- 长期优化:优化库存预警机制、提升用户留存策略
3、监控机制
- 建立GMV异常波动预警(如单日下降>5%自动触发分析)
- 关键指标监控看板(流量、转化率、库存等)
1524

被折叠的 条评论
为什么被折叠?



