一、深入业务寻价值:价值源于深度理解场景
1、驱动运营增长的AARRR模型
又称为海盗模型,是用户增长的经典模型,将数据指标归并至五大阶段:获客、激活、留存、变现、自传播。这5个阶段并没有严格的顺序和界限,例如pdd将获客和自传播结合起来。
各阶段的数据指标:
(1)不同商业模式关注的指标不同,电商平台关注转化率,UGC内容平台关注用户活跃,内容输出;
(2)同一公司在不同阶段关注的指标(北极星指标)也不同,早期关注获客数,积累一定用户到稳定期关注营收GMV

2、精益数据分析的业务方法论
精益数据分析将业务拆解和数据分析划分为四步:
第一步:结合业务模式和业务阶段,确定问题,选择一个希望改进的KPI,并为该KPI确定基准值
第二步:确定数据指标,拆解细化,找出提升KPI的方法
第三步:为数据指标指定方案并进行实验,搜集数据进行分析
第四步:根据测试和分析结果 做出决策
二、积跬步以察千里:数据的采集与治理
1、采集数据前先明确目标
点击流数据》运营数据》调研/定性数据》竞争对手数据
数据存在不同的系统,形成了数据孤岛,只能满足单一的业务场景,难以全局规划和管理
2、数据中台解决了什么问题
数据中台能帮助企业解决数据难找、难用、割裂的问题。企业的目标是以用户为中心,迅速响应用户的需求,因此需要提高数据整合和数据治理的能力,通过数据平台为前台业务赋能。数据中台是数据平台的下一站。数建设数据中台的过程是数据平台不断进行自身治理、打破技术边界、拥抱业务、容纳业务、加强业务属性的过程
3、做好数据埋点,搜集有价值信息
埋点:对用户行为或事件进行捕获,处理和发送的过程
是数据平台和数据中台建设过程的重要环节,埋点源于业务需求,服务于业务需求,能对产品和服务进行全方位追踪
4、加强数据治理,提高数据质量
避免“脏数据”的出现,是数据治理的核心思想
数据治理的原则:约束输入,规范结构,单一来源,规范输出
约束输入——尽量避免让用户手动输入文本
规范结构——设计表单和数据表进行原子化,越细越不容易出错
单一来源——同一数据字段出现在两个表,应该关联两个表,用外键约束该字段
规范输出——建立通用的“数据字典”,统一指标的口径和意义
三、沥尽狂沙方见金:数据的清洗与可视化
1、脏数据的清洗
(1)缺失数据:不影响分析可以删除;或者填充缺失值(用平均值、中位数或随机值等)
(2)重复值:看单个数据还是整行都重复,再考虑删除
(3)错误数据:金额为负数或百分比大于1,考虑更正或删除
(4)不可用数据:如价格字段,有些以人民币为单位,有些以美元为单位
2、数据可视化
- 给用户看的。让用户看得懂
- 简单就是美。一张图颜色不超过三种,字体不超过三种,删除网格线
- 注意对比。
- 强调一致性。一系列的数据可视化的结果要基于相同的标准,最好让它们使用同样的模板
四、营运之道无定法:数据分析的核心方法
4.1 用户画像
本质就是用户信息的标签化集合,包括用户的基础信息、行为数据、消费特征。从多角度的了解用户,对用户进行精细化分组,给运营以精细化指导
常见的天猫八大人群,抖音5A人群
4.2 RFM分析
用于确定用户核心价值
R: 最近一次消费时间
F:一定周期内的消费频次
M:最大的消费金额
4.3 波士顿矩阵
常用于协助企业分析其业务和产品序列的表现,从而更妥善地分配、开发和使用资源

问题产品:需要投入大量资源,可能转成明星,也可能变成瘦狗。在向这类业务投放资源前应谨慎分析
瘦狗产品:通常只能维持收支平衡,但实际上降低了公司的资产回报率。这类业务应该被售出或停止
金牛产品:通常都为公司带来较高的现金收入,业务稳定但是沉闷。为这类业务增加投资并不会大量增加收入,所以公司只会维持这类业务基本的开支
明星产品:这类业务需要投入较多的资源以维持其市场领导者的地位,是公司重点关注的对象
4.4 SWOT分析
[Strengths(优势)、Weakness(弱点)、Opportunities(机遇)、Threats(挑战)]
用于评估公司经营状况或者产品所面临的挑战的

4.5 5W2H分析
常用于多角度拆解分析问题,在归因分析中常用
- what——什么问题或目的?
- when——什么时间做?什么时机做最适合?
- where——在哪里做?什么地方出了问题?
- why——什么时间做?什么时机做最适合?
- who——谁来做?
- how——如何实施?如何提高效率?
- how much——如何实施?如何提高效率?
4.6 KANO模型:对用户需求分类排序
是一个定性分析模型,以分析用户需求对用户满意度的影响为基础,对产品功能进行分级,从而确定产品实现过程中的优先级
根据需求完成度和用户满意度之间的关系,该模型将用户需求分为五类:

以在线教育为案例:
基本需求就是网速快不快,课程能不呢访问;期望型需求就是课程质量;兴奋型需求就是课程交互页面设计好,目录清晰;无差异需求就是可有可无的;反向型需求就是带来负面影响的因素;
4.7 漏斗分析
用于用户行为分析、产品转化、流量监控
通过每个节点的转化率,判断设计是否合理,是否存在优化空间
4.8 A/B测试
用于产品迭代或核心功能更新
两个不同的设计或者方案(即A和B)进行比较,用来研究某一变量所带来的差异。A和B两个方案中只有一个变量不同,而其他变量保持一致,然后再观察用户对A和B方案的反应差异,由此判断出A和B方案中哪一个更佳。
五、增长践行成于思:数据分析的关键思维
5.1 逻辑思维:演绎与归纳
逻辑思维能力就是指正确、合理思考的能力,是在认识事物的过程中,进行观察、比较、分析、综合、抽象、概括、判断、推理的能力。
数据分析遵循:提出问题、分析问题、提出假设、验证假设、输出结论这一过程,需要逻辑思维的参与。
归纳法:从特殊到一般的推理过程,是通过个别经验归纳出普遍规律的方法,是从部分样本推知全体样本的过程。归纳法是基于经验的方法,其推理方式不够严谨。
演绎法:从一般到特殊的推理过程,常见的表现形式是从大前提到小前提,再到结论的逻辑三段论
在现实情况下,一般原理也只能来源于经验。因此,我们不得不先使用归纳法得出原理,然后再用演绎法做出推断、判断或预测
5.2 发散思维与收敛思维
针对特定问题,一般处理都是先发散,展开头脑风暴,得到尽量多的方案或答案,然后将所有的方案集中在一起,运用收敛思维,去掉一些不相关的方案,根据排序选择一个或几个较好的解决方案
5.3 相关思维和因果思维
注意相关性并不代表存在因果性

进行因果辩证,提出一些假设问题
- 原因是否真实?
- 结果是否真实?
- 原因一定会引出这个结果吗?是否其他原因导致的?
此时,我们会发现一些表面上的原因只是结果的必要不充分条件。应先对结论提出假设,并设计实验或采取其他的手段来验证假设,最终验证结果才是真正的结论。(参考假设检验)
5.4 批判性思维:保持怀疑
批判性思维一般包括理性的、保持怀疑的和无偏见的分析,以及对事实证据的评估。对于数据分析师来说,时时运用批判性思维的习惯能让他们透过现象看清问题的本质,并做到去伪存真。
5.5 结构化思维:形成系统
结构化思维是从整体思考到局部思考,先对事物进行分解(MECE法则),然后归类分组,最后总结概括。这是一种层级分明的思考模式,运用它可以把零散的信息整理成结构清晰的系统。
金字塔式结构思维:
- 归类分组,将思想组织为”金字塔“
- 自上而下表达,结论先行
- 自下而上思考,总结概括
将零散混乱,无条理的想法集合 》》 有条理、有层次的思考模式
5.6 图解思维:一图胜千言
图表式更直观的表达方式,让复杂的关系更好地展现,承载更多的信息;还可以把数据间的隐藏关系直观地展现出来
一般的小问题分析结论可以是:一两张图表 + 一两句话结论 + 一两条建议
5.7 指标思维:北极星指标
北极星指标:第一关键指标,是产品在当前阶段与业务、战略相关的核心指标,指引着业务前进的方向(提升这一指标)
虚荣指标:在营收不足阶段、现金流出现危机情况下仍关注流量、增速,那么流量和增速就是虚荣指标。

魔法数字:如果说北极星指标是长远目标,魔法数字则是当前行动指南
例如,通过数据分析,某公司发现了高黏性用户的“秘密”之一:在80% 的情况下,高黏性用户会在第一次购物后的30天内完成第二次购物;LinkedIn 用户在一周内添加5个社交好友,Facebook 用户在10 天内添加7个好友,这样就能够保证较高的留存率。这些例子中的“30天”“5个”“7个”就是《增长黑客》中的魔法数字。
北极星指标的选取原则:
- 指标应该易于理解,可量化、可拆解的
- 指标可以反映整体业务在往好的方向发展
- 指标能够反映用户从产品中获得价值,aha时刻
- 指标能够反映用户活跃度
- 指标是先导性指标而非滞后性指标
- 指标能为达到长期的商业目标奠定基础

未来或许是:RARRA。即AARRR中5个阶段的次序变为留存(Retention)→激活(Activation)→自传播循环(Referral)→变现(Revenue)→获客(Acquisition),指标本身没变,运营的思路变了,一切动作都以用户的留存为核心,同时也更强调现有用户在推荐和获客中的作用
在产品积累了足够的流量池之后,未来的重心必定是从获客转移到留存
5.8 细分思维:分组与分类
细分思维就是对产品、用户、运营策略及各种数据做单一维度或多维度的拆解、分组,再进一步细分,比较各组之间的差异。
应用主要有:用户画像、波士顿矩阵、RFM模型、漏斗分析等,都是细分思维的应用
一些常见的细分维度:时间、地域、渠道、产品、用户、行为、消费状况等
5.9 对比思维:找到变化点
只有对比才能看到变化,计算增速,找到问题点
纵向对比:不同时间的对比,如环比获客数
横向对比:与同类产品进行对比
一般对比与分组结合使用,先细分,在进行对比
5.10 用户思维:初心不可忘
数据分析与运营都是为了获客、激活、留存和增长。这一切的最终目的都是为了给用户提供他们需要的服务。KANO模型也是用户思维的体现,通过对用户核心需求进行优先级排序,确保产品能够解决用户的痛点问题。因此,无论是产品、运营、市场还是做分析,都需要研究用户心理。
5.11 真实思维:以事实为真
真实思维是以尊重事实为导向的思维。
对比处于初创、发展或守业的公司,真实思维就意味着认真地分析现状,正确认识自身发展的实际情况,确定合理的目标,不虚荣地追逐数据,不弄虚作假,不急功近利,不追求纸面上的急速增长。
作为分析师,你准备的分析报告并不是总能与你所期待的结果相匹配,请不要强行用数据解释结果,或者刻意忽略掉某些本不应该忽略的因素。而应该从始至终尊重事实,从事实出发,寻根究底,发现不足。要有接受数据分析不是“万能灵丹”的勇气,也要敢于找出数据背后隐藏的事实真相。
1999

被折叠的 条评论
为什么被折叠?



