本篇文章给大家谈谈python随机森林特征重要性,以及python随机森林分类模型,希望对各位有所帮助,不要忘了收藏本站喔。
目录
本文使用mnist数据集,进行随机森林算法。
一、模型介绍
1. 集成学习
集成学习通过训练学习出多个估计器,当需要预测时通过结合器将多个估计器的结果整合起来当作最后的结果输出python编程代码画爱心。
集成学习的优势是提升了单个估计器的通用性与鲁棒性,比单个估计器拥有更好的预测性能。集成学习的另一个特点是能方便的进行并行化操作。
2. bagging
Bagging 算法是一种集成学习算法,其全称为自助聚集算法(Bootstrap aggregating),顾名思义算法由 Bootstrap 与 Aggregating 两部分组成。
算法的具体步骤为:假设有一个大小为 N 的训练数据集,每次从该数据集中有放回的取选出大小为 M 的子数据集,一共选 K 次,根据这 K 个子数据集,训练学习出 K 个模型。当要预测的时候,使用这 K 个模型进行预测,再通过取平均值或者多数分类的方式,得到最后的预测结果。
3. 随机森林算法
将多个决策树结合在一起,每次数据集是随机有放回的选出,同时随机选出部分特征作为输入,所以该算法被称为随机森林算法。可以看到随机森林算法是以决策树为估计器的Bagging算法。
上图展示了随机森林算法的具体流程,其中结合器在分类问题中,选择多数分类结果作为最后的结果,在回归