目录
背景
triton 目前官方只有Linux 版本,若未安装,则会出现报错:
ModuleNotFoundError: No module named 'triton'
在 Windows 系统中,如果直接用 pip install triton
来安装,则会报错:
ERROR: Could not find a version that satisfies the requirement triton (from versions: none)
ERROR: No matching distribution found for triton
解决方法
方法一:(治标不治本)
有大神强行在Windows平台上编译了 triton 的whl,参考博客【window平台安装 triton】【Python|Windows 系统安装 triton 的方法】,在下载路径下 pip install 安装 whl 文件即可。
即直接去 HuggingFace 上下载 triton 的 Windows 包:https://hf-mirror.com/madbuda/triton-windows-builds。
在此给出各个版本的下载链接:
- 【triton 2.0.0 (Python 3.10)】
- 【triton 2.1.0 (Python 3.10)】【triton 2.1.0 (Python 3.11)】
- 【triton 3.0.0(Python 3.10)】【triton 3.0.0(Python 3.11)】【triton 3.0.0(Python 3.12)】
但是,实测上述安装包里面 triton 核心的 triton.jit
和 torch.compile
等功能均无法像Linux下正常运行,上述安装包只是从形式上完成编译。
方法二:(triton-windows)
主要参考大佬的工作:triton-windows。
环境要求:
torch >= 2.4.0
;CUDA >=12
;- 安装
MSVC
和Windows SDK
; - 环境需要有
msvcp140.dll
和vcruntime140.dll
。如果 - 然后就可以安装他编译的 whl,实现真正的功能。
- 前期环境准备
需要安装一些满足前述环境的包,这里给一个环境示例(来自本人博客【Windows 下Mamba2 / Vim / Vmamba 环境安装问题记录及解决方法终极版(无需绕过triton)】,具体版本可以不一致):
conda create -n mamba python=3.10
conda activate mamba
# CUDA 12.4
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
python -c "import torch; print(torch.cuda.is_available())" # 验证torch安装
# 安装cuda
conda install nvidia/label/cuda-12.4.0::cuda-nvcc
- 安装 MSVC 和 Windows SDK
参考博客:【Windows 如何仅安装 MSVC 而不安装 Visual Studio】
-
下载 Visual Studio Installer,下载地址为:https://aka.ms/vs/17/release/vs_BuildTools.exe。
-
运行下载的exe,然后安装单个组件,搜索并选择合适的MSVC 和 Windows SDK:
注意只需要下载单个组件,无需安装Visual Studio。 -
修改环境变量,请参考博客:【Windows 如何仅安装 MSVC 而不安装 Visual Studio】
位置为:系统高级设置-环境变量-系统变量
。注意修改版本号为你自己的版本- 选择 Path ,添加:
C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.40.33807\bin\Hostx64\x64
C:\Program Files (x86)\Windows Kits\10\bin\10.0.20348.0\x64
- 添加 LIB,添加3条:
C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.40.33807\lib\x64; C:\Program Files (x86)\Windows Kits\10\Lib\10.0.20348.0\ucrt\x64; C:\Program Files (x86)\Windows Kits\10\Lib\10.0.20348.0\um\x64
- 添加 INCLUDE,添加6条:
C:\Program Files (x86)\Microsoft Visual Studio\2022\BuildTools\VC\Tools\MSVC\14.40.33807\include; C:\Program Files (x86)\Windows Kits\10\Include\10.0.20348.0\ucrt; C:\Program Files (x86)\Windows Kits\10\Include\10.0.20348.0\um; C:\Program Files (x86)\Windows Kits\10\Include\10.0.20348.0\winrt; C:\Program Files (x86)\Windows Kits\10\Include\10.0.20348.0\cppwinrt; C:\Program Files (x86)\Windows Kits\10\Include\10.0.20348.0\shared
- 选择 Path ,添加:
-
验证 MSVC 和 Windows SDK 安装成功
命令行里输入cl
,输出Microsoft (R) C/C++ Optimizing Compiler ...
即可。
- vcredist 安装
vcredist (也称为“Visual C++ Redistributable for Visual Studio 2015-2022”,msvcp140.dll
,vcruntime140.dll
)。一般环境里都有可跳过,如果没有,可以从 https://aka.ms/vs/17/release/vc_redist.x64.exe 中安装。
- whl 安装
前期环境都配置无误后,直接下载 whl 安装(GPU算力9.0及以下,算力查询参考:Your GPU Compute Capability):
pip install https://github.com/woct0rdho/triton-windows/releases/download/v3.1.0-windows.post5/triton-3.1.0-cp310-cp310-win_amd64.whl
也可手动下载下来然后在下载路径下安装:
pip install triton-3.1.0-cp310-cp310-win_amd64.whl
- 验证
验证脚本为:
import torch
import triton
import triton.language as tl
@triton.jit
def add_kernel(x_ptr, y_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
pid = tl.program_id(axis=0)
block_start = pid * BLOCK_SIZE
offsets = block_start + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
x = tl.load(x_ptr + offsets, mask=mask)
y = tl.load(y_ptr + offsets, mask=mask)
output = x + y
tl.store(output_ptr + offsets, output, mask=mask)
def add(x: torch.Tensor, y: torch.Tensor):
output = torch.empty_like(x)
assert x.is_cuda and y.is_cuda and output.is_cuda
n_elements = output.numel()
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
add_kernel[grid](x, y, output, n_elements, BLOCK_SIZE=1024)
return output
a = torch.rand(3, device="cuda")
b = a + a
b_compiled = add(a, a)
print(b_compiled - b)
print("If you see tensor([0., 0., 0.], device='cuda:0'), then it works")
不报错即说明配置成功。
出现的问题
1. 无法打开包括文件:“cuda.h” (20250325更新)
在验证时出现 fatal error C1083: 无法打开包括文件:“cuda.h”: No such file or directory
,如下图所示:
此处是因为环境变量缺失导致找不到base环境里的cuda核心库,建议重新安装 cuda,譬如12.4 版本。(12版本以上会自动配置环境变量)。如果是安装 cuda 11.8 可以参考:CUDA与CUDNN在Windows下的安装与配置(超级详细版) 等网上教程手动配置环境变量。
base 环境和虚拟环境cuda版本可以是独立的,但是虚拟环境里需要依赖部分base 环境里的cuda核心(包括很多c++内核)。
2. raise KeyError (key) from None (20250325更新)
验证时发生以下错误 raise KeyError (key) from None
:
此时需要检查一下triton版本,是否是 triton-Windows 项目的安装包,不要使用方法一里强行打包的whl。
3. 算力12.0 GPU版本 (20250331更新)
针对 GeForce RTX 50系列 (5070,5080,5070Ti,5090等),所需要的cuda 以及 pytorch版本较高。
由于CUDA版本过高,原来的cuda-nvcc方法暂不支持,因此直接在主环境中安装CUDA12.8的驱动:
CUDA Toolkit 12.8 Downloads | NVIDIA Developer
此时前期环境配置可变为:
# CUDA 12.8
pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu128
由于上述过程比较慢,可以从官网直接下载 whl 到本地,然后直接安装:
torch-2.8.0.dev20250323,torchvision-0.22.0,(torchaudio-2.6.0,可选)
然后切换到whl所在目录,在虚拟环境下安装:
pip install torch-2.8.0.dev20250323+cu128-cp310-cp310-win_amd64.whl
pip install torchvision-0.22.0.dev20250321+cu128-cp310-cp310-win_amd64.whl
pip install torchaudio-2.6.0.dev20250325+cu128-cp310-cp310-win_amd64.whl # 可选
python -c "import torch; print(torch.cuda.is_available())" # 验证torch安装
然后再进行后面的 MSVC 和 Windows SDK 安装。