吴恩达视频-第一门课第3周3.2节-神经网络的表示(Neural Network Representation)

本文介绍了神经网络的表示,特别是关注一个包含一个隐藏层的神经网络。神经网络的输入层、隐藏层和输出层分别被定义,并解释了隐藏层的含义。激活值a[0]、a[1]和a[2]分别代表输入、隐藏和输出层的激活状态,而参数W和b与各层相关联。文章还提到了参数的维度以及神经网络的层数计算规则。在后续视频中,将进一步探讨神经网络的计算过程。
摘要由CSDN通过智能技术生成

3.2 神经网络的表示(Neural Network Representation)
  先回顾一下我在上一个视频画几张神经网络的图片,在这次课中我们将讨论这些图片的具体含义,也就是我们画的这些神经网络到底代表什么。
  我们首先关注一个例子,本例中的神经网络只包含一个隐藏层(图 3.2.1)。这是一张神经网络的图片,让我们给此图的不同部分取一些名字。
在这里插入图片描述
  图 3.2.1
  我们有输入特征 x 1 {{x}_{1}} x1 x 2 {{x}_{2}} x2 x 3 {{x}_{3}} x3,它们被竖直地堆叠起来,这叫做神经网络的输入层。它包含了神经网络的输入;然后这里有另外一层我们称之为隐藏层(图 3.2.1 的四个结点)。待会儿我会回过头来讲解术语"隐藏"的意义;在本例中最后一层只由一个结点构成,而这个只有一个结点的层被称为输出层,它负责产生预测值。解释隐藏层的含义:在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入𝑥也包含了目标输出𝑦,所以术语隐藏层的含义是在训练集中,这些中间结点的准确值我们是不知道到的,也就是说你看不见它们在训练集中应具有的值。你能看见输入的值,你也能看见输出的值,但是隐藏层中的东西,在训练集中你是无法看到的。所以这也解释了词语隐藏层,只是表示你无法在训练集中看到他们。
  现在我们再引入几个符号,就像我们之前用向量𝑥表示输入特征。这里有个可代替的记号 a [ 0 ] {{a}^{[0]}} a[0]可以用来表示输入特征。𝑎表示激活的意思,它意味着网络中不同层的值会传递到它们后面的层中,输入层将𝑥传递给隐藏层,所以我们将输入层的激活值称为 a [ 0 ] {{a}^{[0]}} a[0];下一层即隐藏层也同样会产生一些激活值,那么我将其记作 a [ 1 ] {{a}^{[1]}} a[1],所以具体地,这里的第一个单元或结点我们将其表示为 a 1 [ 1 ] {{a}_{1}^{[1]}} a1[1],第二个结点的值我们记为 a 2 [ 1 ] {{a}_{2}^{[1]}} a2[1]以此类推。所以这里的是一个四维的向量如果写成 Python 代码,那么它是一个规模为 4x1 的矩阵或一个大小为 4 的列向量,如下公式,它是四维的,因为在本例中,我们有四个结点或者单元,或者称为四个隐藏层单元; 公式 3.7
在这里插入图片描述
  最后输出层将产生某个数值𝑎,它只是一个单独的实数,所以的 y ^ \hat{y} y^值将取为 a [ 2 ] {{a}^{[2]}} a[2]。这与逻辑回归很相似,在逻辑回归中,我们有 y ^ \hat{y} y^直接等于𝑎,在逻辑回归中我们只有一个输出层,所以我们没有用带方括号的上标。但是在神经网络中,我们将使用这种带上标的形式来明确地指出这些值来自于哪一层,有趣的是在约定俗成的符号传统中,在这里你所看到的这个例子,只能叫做一个两层的神经网络(图3.2.2)。原因是当我们计算网络的层数时,输入层是不算入总层数内,所以隐藏层是第一层,输出层是第二层。第二个惯例是我们将输入层称为第零层,所以在技术上,这仍然是一个三层的神经网络,因为这里有输入层、隐藏层,还有输出层。但是在传统的符号使用中,如果你阅读研究论文或者在这门课中,你会看到人们将这个神经网络称为一个两层的神经网络,因为我们不将输入层看作一个标准的层。
在这里插入图片描述
  图 3.2.2
  最后,我们要看到的隐藏层以及最后的输出层是带有参数的,这里的隐藏层将拥有两个参数𝑊和𝑏,我将给它们加上上标 [ 1 ] {{ }^{[1]}} [1]( W [ 1 ] {{W}^{[1]}} W[1], b [ 1 ] {{b}^{[1]}} b[1]),表示这些参数是和第一层这个隐藏层有关系的。之后在这个例子中我们会看到𝑊是一个 4x3 的矩阵,而𝑏是一个 4x1 的向量,第一个数字 4 源自于我们有四个结点或隐藏层单元,然后数字 3 源自于这里有三个输入特征,我们之后会更加详细地讨论这些矩阵的维数,到那时你可能就更加清楚了。相似的输出层也有一些与之关联的参数 W [ 2 ] {{W}^{[2]}} W[2]以及 b [ 2 ] {{b}^{[2]}} b[2]。从维数上来看,它们的规模分别是 1x4 以及 1x1。1x4 是因为隐藏层有四个隐藏层单元而输出层只有一个单元,之后我们会对这些矩阵和向量的维度做出更加深入的解释,所以现在你已经知道一个两层的神经网络什么样的了,即它是一个只有一个隐藏层的神经网络。
  在下一个视频中。我们将更深入地了解这个神经网络是如何进行计算的,也就是这个神经网络是怎么输入𝑥,然后又是怎么得到 y ^ \hat{y} y^

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越努力越幸运@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值