tensorflow之逻辑回归模型实现

前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本。

首先,加载数据,并划分训练集和测试集:

# 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类
cancer = skd.load_breast_cancer()

# 将数据集的数据和标签分离
X_data = cancer.data
Y_data = cancer.target
x_train,x_test,y_train,y_test = train_test_split(X_data,Y_data,test_size=0.3,random_state=0)

这里还要注意一下,因为后面要用到的损失函数为交叉熵,而数据集的标签是一维的,所以我们需要将其转换为位数来表示类别,也就是[0,1]=>[[0,1],[1,0]]这种形式的标签:

y_train_new = np.zeros([y_train.shape[0], 2], dtype='int32')    
y_test_new = np.zeros([y_test.shape[0], 2], dtype='int32')
for i in range(y_train.shape[0]):
    if y_train[i] == 0:
        y_train_new[i,0] = 0
        y_train_new[i,1] = 1
    else:
        y_train_new[i,0] = 1
        y_train_new[i,1] = 0
for i in range(y_test.shape[0]):
    if y_test[i] == 0:
        y_test_new[i,0] = 0
        y_test_new[i,1] = 1
    else:
        y_test_new[i,0] = 1
        y_test_new[i,1] = 0

接着就是老套路,初始化训练参数,设置模型输入输出,然后是构建模型,二分类逻辑回归模型的数学表达式为:

用tensorflow实现代码如下:

pred = tf.nn.sigmoid(tf.matmul(X, W) + b) # sigmoid

然后是构建交叉熵表达式,其数学公式为:

用tensorflow实现代码如下:

cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(pred), reduction_indices=1))

对于训练好的模型的测试性能的评价,这里我采用计算ROC曲线的方式来展现。首先是模型对于输入数据的预测会得到一个对应的1*2的输出,这个输出不一定是很好的[0 1]或者[1 0],而是一个类似于概率的量,也就是类似于这样[0.9527, 0.0473],所以我们需要判断,如果第一位小于第二位,依照前面的设定应该是0,反之为1,当然可能会有第一位等于第二位的情况,那就只能是存在误差了:

y_test_pred = sess.run(pred, feed_dict={X: x_test})
y_scores = np.empty((y_test_pred.shape[0]))
for i in range(y_scores.shape[0]):
    if y_test_pred[i,0]<y_test_pred[i,1]:
        y_scores[i]=0
    else:
        y_scores[i]=1

然后roc曲线和其AUC值这里调用的是sklearn提供的函数:

fpr, tpr, thresholds = roc_curve((y_test), y_scores)
AUC_ROC = roc_auc_score(y_test, y_scores)

然后是画出precision recall curve(精确率-召回率曲线),同样也是调用sklearn的函数:

precision, recall, thresholds = precision_recall_curve(y_test, y_scores)
precision = np.fliplr([precision])[0] #so the array is increasing (you won't get negative AUC)
recall = np.fliplr([recall])[0]  #so the array is increasing (you won't get negative AUC) AUC_prec_rec = np.trapz(precision,recall)

接着是计算置信度矩阵,得到矩阵后顺带的就可以计算准确率、灵敏性、特异性等几个参数了,同样的,还是调用sklearn的函数即可:

confusion = confusion_matrix(y_test, y_pred)

accuracy = float(confusion[0,0]+confusion[1,1])/float(np.sum(confusion))
specificity = float(confusion[0,0])/float(confusion[0,0]+confusion[0,1])
sensitivity = float(confusion[1,1])/float(confusion[1,1]+confusion[1,0])
precision = float(confusion[1,1])/float(confusion[1,1]+confusion[0,1])

同样的衡量指标还有Jaccard系数和F1分数:

jaccard_index = jaccard_similarity_score(y_test, y_pred, normalize=True)
F1_score = f1_score(y_test, y_pred, labels=None, average='binary', sample_weight=None)

这里涉及到了很多模型性能的评价指标,具体的含义就不细究了,下一次专门写一篇来总结吧。完整的代码如下:

from __future__ import print_function

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets as skd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import scale
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import jaccard_similarity_score
from sklearn.metrics import f1_score

# 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类
cancer = skd.load_breast_cancer()

# 将数据集的数据和标签分离
X_data = cancer.data
Y_data = cancer.target
print("X_data.shape = ", X_data.shape)
print("Y_data.shape = ", Y_data.shape)

# 将数据和标签分成训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(X_data,Y_data,test_size=0.3,random_state=0)
x_train = scale(x_train)
x_test = scale(x_test)
y_train_new = np.zeros([y_train.shape[0], 2], dtype='int32')
y_test_new = np.zeros([y_test.shape[0], 2], dtype='int32')
for i in range(y_train.shape[0]):
    if y_train[i] == 0:
        y_train_new[i,0] = 0
        y_train_new[i,1] = 1
    else:
        y_train_new[i,0] = 1
        y_train_new[i,1] = 0
for i in range(y_test.shape[0]):
    if y_test[i] == 0:
        y_test_new[i,0] = 0
        y_test_new[i,1] = 1
    else:
        y_test_new[i,0] = 1
        y_test_new[i,1] = 0
print("x_train.shape = ", x_train.shape)
print("x_test.shape = ", x_test.shape)
print("y_train.shape = ", y_train_new.shape)
print("y_test.shape = ", y_test_new.shape)



# 初始化参数
learning_rate = 0.01
training_epochs = 50000
display_step = 50

# 定义图模型输入
X = tf.placeholder(tf.float32, [None, 30]) # mnist data image of shape 28*28=784
Y = tf.placeholder(tf.float32, [None, 2]) # 0-9 digits recognition => 10 classes#

# 设置模型权重和偏置
W = tf.Variable(tf.random_normal([30, 2]),dtype=tf.float32, name="weight")
b = tf.Variable(tf.random_normal([2]),dtype=tf.float32, name="bias")

# 构建模型
#pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
pred = tf.nn.sigmoid(tf.matmul(X, W) + b) # sigmoid

# 使用交叉熵来最小化训练误差
cost = tf.reduce_mean(-tf.reduce_sum(Y*tf.log(pred), reduction_indices=1))
# 梯度下降法
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)#

# 初始化器
init = tf.global_variables_initializer()

# 开始训练
with tf.Session() as sess:#

    #  初始化
    sess.run(init)#

    # 迭代训练
    for epoch in range(training_epochs):
        avg_cost = 0.

        sess.run(optimizer, feed_dict={X: x_train, Y: y_train_new})

        # 显示训练信息
        if (epoch+1) % display_step == 0:
            c = sess.run(cost, feed_dict={X: x_train, Y:y_train_new})
            print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
    print("完成训练!")

    # 测试模型
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(Y, 1))
    # 计算准确度
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    print("Accuracy:", accuracy.eval({X: x_test, Y: y_test_new}))
    # 计算模型预测
    y_test_pred = sess.run(pred, feed_dict={X: x_test})
    y_pred = np.empty((y_test_pred.shape[0]), dtype='int32')
    # 二值化
    for i in range(y_pred.shape[0]):
        if y_test_pred[i,0]<y_test_pred[i,1]:
            y_pred[i]=0
        else:
            y_pred[i]=1
    # 得到ROC曲线
    fpr, tpr, thresholds = roc_curve((y_test), y_pred)
    AUC_ROC = roc_auc_score(y_test, y_pred)
    roc_curve =plt.figure()
    plt.plot(fpr,tpr,'-',label='Area Under the Curve (AUC = %0.4f)' % AUC_ROC)
    plt.title('ROC curve')
    plt.xlabel("FPR (False Positive Rate)")
    plt.ylabel("TPR (True Positive Rate)")
    plt.legend(loc="lower right")
    plt.show()

    # 得到precision_recall曲线
    precision, recall, thresholds = precision_recall_curve(y_test, y_pred)
    precision = np.fliplr([precision])[0]  #so the array is increasing (you won't get negative AUC)
    recall = np.fliplr([recall])[0]  #so the array is increasing (you won't get negative AUC)
    AUC_prec_rec = np.trapz(precision,recall)
    print("\nArea under Precision-Recall curve: " +str(AUC_prec_rec))
    prec_rec_curve = plt.figure()
    plt.plot(recall,precision,'-',label='Area Under the Curve (AUC = %0.4f)' % AUC_prec_rec)
    plt.title('Precision - Recall curve')
    plt.xlabel("Recall")
    plt.ylabel("Precision")
    plt.legend(loc="lower right")
    plt.show()
    
    # 计算置信度矩阵
    threshold_confusion = 0.5
    print("\nConfusion matrix:  Costum threshold (for positive) of " +str(threshold_confusion))
    confusion = confusion_matrix(y_test, y_pred)
    print(confusion)
    accuracy = 0
    if float(np.sum(confusion))!=0:
        accuracy = float(confusion[0,0]+confusion[1,1])/float(np.sum(confusion))
    print("Global Accuracy: " +str(accuracy))
    specificity = 0
    if float(confusion[0,0]+confusion[0,1])!=0:
        specificity = float(confusion[0,0])/float(confusion[0,0]+confusion[0,1])
    print("Specificity: " +str(specificity))
    sensitivity = 0
    if float(confusion[1,1]+confusion[1,0])!=0:
        sensitivity = float(confusion[1,1])/float(confusion[1,1]+confusion[1,0])
    print("Sensitivity: " +str(sensitivity))
    precision = 0
    if float(confusion[1,1]+confusion[0,1])!=0:
        precision = float(confusion[1,1])/float(confusion[1,1]+confusion[0,1])
    print("Precision: " +str(precision))

    #Jaccard similarity index
    jaccard_index = jaccard_similarity_score(y_test, y_pred, normalize=True)
    print("\nJaccard similarity score: " +str(jaccard_index))

    #F1 score
    F1_score = f1_score(y_test, y_pred, labels=None, average='binary', sample_weight=None)
    print("\nF1 score (F-measure): " +str(F1_score))

    print("y_test[0:20]=", y_test[0:20])
    print("y_pred[0:20]=", y_pred[0:20])

最总的结果显示如下:

古人学问无遗力,少壮工夫老始成。

纸上得来终觉浅,绝知此事要躬行。

  -- 陆游 《冬夜读书示子聿》

 

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值