秦刚刚的机器学习成长之路之高斯核函数为什么能将原始空间映射为无穷维空间(核函数)

写作背景:很多时候数据在低维空间的时候很难将它们区别开来,所以需要借助核函数将其映射到高维空间中,例如谱聚类,SVM等算法。但是一开始,这其中的原理很多人不知道(例如我啦,哈哈哈),因此有了这篇简单的文章_

1.核函数的作用及意义

低维计算,高维表现

2.高斯核函数为什么能将原始空间映射为无穷维空间?

思路:从泰勒展开式的角度来解释,如下:

e x e^x ex的泰勒展开式为:
(1) e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots +\frac{x^n}{n!} \tag 1 ex=1+x+2!x2+3!x3++n!xn(1)
可以看到:式(1)是一个无穷多项的式子。

而高斯核函数为:
(2) k ( x 1 , x 2 ) = e ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 ) k(x_1,x_2) = e^{(-\frac{||x_1-x_2||^2}{2\sigma^2})} \tag 2 k(x1,x2)=e(2σ2x1x22)(2)

将泰勒展开式带入式(2)中,可以得到一个无穷维度的映射,如下:
(3) k ( x 1 , x 2 ) = 1 + ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 ) + ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 ) 2 2 ! + ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 ) 3 3 ! + ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 ) n n ! k(x_1,x_2) = 1+(-\frac{||x_1-x_2||^2}{2\sigma^2})+\frac{(-\frac{||x_1-x_2||^2}{2\sigma^2})^2}{2!}+\frac{(-\frac{||x_1-x_2||^2}{2\sigma^2})^3}{3!}+\frac{(-\frac{||x_1-x_2||^2}{2\sigma^2})^n}{n!} \tag 3 k(x1,x2)=1+(2σ2x1x22)+2!(2σ2x1x22)2+3!(2σ2x1x22)3+n!(2σ2x1x22)n(3)
在式(3)中,如果 σ \sigma σ选得很大的话,高次特征上的权值将会衰减得非常快,此时的式(3)实际上相当于一个低维的子空间;
如果 σ \sigma σ选得很小的话,就可将原始空间映射到任意高维的空间,即可以将任意的数据映射为线性可分。

另外,将式(3)进一步展开有:
(4) k ( x 1 , x 2 ) = e ( − ∣ ∣ x 1 − x 2 ∣ ∣ 2 2 σ 2 )                = e − ( x 1 − x 2 ) 2 2 σ 2                      = e − x 1 2 + x 2 2 − 2 x 1 x 2 2 σ 2                    = e − x 1 2 + x 2 2 2 σ 2 x 1 x 2 σ 2                    = e − x 1 2 + x 2 2 2 σ 2 ⋅ ( 1 + 1 σ 2 x 1 x 2 1 ! + ( 1 σ 2 ) 2 ( x 1 x 2 ) 2 2 ! + ( 1 σ 2 ) 3 ( x 1 x 2 ) 3 3 ! + ⋯ + ( 1 σ 2 ) n ( x 1 x 2 ) n n ! ) = e − x 1 2 + x 2 2 2 σ 2 ⋅ ( 1 ⋅ 1 + 1 1 ! x 1 σ x 2 σ + 1 2 ! x 1 2 σ 2 x 2 2 σ 2 + 1 3 ! x 1 3 σ 3 x 2 3 σ 3 + ⋯ + 1 n ! x 1 n σ n x 2 n σ n )                       = ϕ ( x 1 ) T ⋅ ϕ ( x 2 ) k(x_1,x_2) =e^{(-\frac{||x_1-x_2||^2}{2\sigma^2})} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = e^{-\frac{(x_1-x_2)^2}{2\sigma^2}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = e^{-\frac{x_1^2+x_2^2-2x_1x_2}{2\sigma^2}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = e^{{-\frac{x_1^2+x_2^2}{2\sigma^2}}{\frac{x_1x_2}{\sigma^2}}} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = e^{-\frac{x_1^2+x_2^2}{2\sigma^2}}\cdot(1+\frac{1}{\sigma^2}\frac{x_1x_2}{1!}+(\frac{1}{\sigma^2})^2\frac{(x_1x_2)^2}{2!}+(\frac{1}{\sigma^2})^3\frac{(x_1x_2)^3}{3!}+\cdots+(\frac{1}{\sigma^2})^n\frac{(x_1x_2)^n}{n!}) \\ = e^{-\frac{x_1^2+x_2^2}{2\sigma^2}}\cdot(1\cdot1+\frac{1}{1!}\frac{x_1}{\sigma}\frac{x_2}{\sigma}+\frac{1}{2!}\frac{x_1^2}{\sigma^2}\frac{x_2^2}{\sigma^2}+\frac{1}{3!}\frac{x_1^3}{\sigma^3}\frac{x_2^3}{\sigma^3}+\dots+\frac{1}{n!}\frac{x_1^n}{\sigma^n}\frac{x_2^n}{\sigma^n}) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \phi(x_1)^T\cdot\phi(x_2) \\\tag 4 k(x1,x2)=e(2σ2x1x22)              =e2σ2(x1x2)2                    =e2σ2x12+x222x1x2                  =e2σ2x12+x22σ2x1x2                  =e2σ2x12+x22(1+σ211!x1x2+(σ21)22!(x1x2)2+(σ21)33!(x1x2)3++(σ21)nn!(x1x2)n)=e2σ2x12+x22(11+1!1σx1σx2+2!1σ2x12σ2x22+3!1σ3x13σ3x23++n!1σnx1nσnx2n)                     =ϕ(x1)Tϕ(x2)(4)

其中, ϕ ( x ) = e − x 2 2 σ 2 ( 1 , 1 1 ! x σ , 1 2 ! x 2 σ 2 , ⋯   , 1 n ! x n σ n ) \phi(x)=e^{-\frac{x^2}{2\sigma^2}}{(1,\sqrt{\frac{1}{1!}}\frac{x}{\sigma},\sqrt{\frac{1}{2!}}\frac{x^2}{\sigma^2},\cdots,\sqrt{\frac{1}{n!}}\frac{x^n}{\sigma^n})} ϕ(x)=e2σ2x2(1,1!1 σx,2!1 σ2x2,,n!1 σnxn)

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值