这里想说的主要是对于邓公的《数据结构》一书中的4.4节试探回溯法的再学习。
这个方法可以通俗理解为希腊神话忒休斯在走藏着米诺陶诺斯的迷宫时的方法,由于我在刺客信条奥德赛中体验过这个迷宫,所以对于这个故事感受很深。这种方法主要分为两个阶段,首先是试探,这类似于深度优先搜索算法,即在确定一个点之后一直往后试探着尝试达到最深的节点,一直试探到最开始那一行的临界,此谓穷举;然后是回溯,及当试探的最后一步没有得到解时,回到试探的上一步换一个节点继续试探,即为回溯,同时在试探失败的节点做下记号,此谓剪枝。
这里的问题主要针对的是书中所说的N皇后问题,具体的就是在一个N*N的棋盘上能够放置N个皇后,然后这些皇后怎么放置,有多少种放置方法的问题。
主要的解题思路就是首先创建一个皇后的类,其中重载了= =与!=运算符(邓公是两个都重载了,但是我自己在使用时似乎只用到了= =运算符)。这个等于很明确,就是指的两个皇后之间的上下左右对角线不等的意思。(这里邓公的皇后数据结构的xy似乎和我们常规的想法相反,其x为纵坐标,y为横坐标)
然后是对于试探回溯的函数主体,为了保证循环输入我建了一个tuple来存储返回的两个值(不过这样似乎会拖慢运算速度),内部的函数实现基本都写在注释里了,大体含义就是从零点(0,0)开始,从第一行选取第一个节点后一直向上行试探回溯,一直到第一行的选点到达最侧边。即此时x=0,且y越界达到了n,突破循环条件,得到最终的试探次数与解的个数,输出即可。
然后影响速度的主要是函数中的checkout函数,我使用的是遍历栈中所有皇后元素与当前皇后元素比对的方式,在栈中数据量庞大是时候似乎效率略低,这样导致我的函数在计算n=9,10之类的方格时已需要数秒时间。然而邓公的dsacpp中用的是vector继承的find函数,相对来说速度比我的快一点,不过基本过了11之后时间会逐步加长,看来本人的此算法的健壮性似乎并不高,还需要一些改进。
下面是相关的代码
#include <iostream>
#include <stack>
#include <tuple>
using namespace std;
struct queen
{
int x, y;
queen(int xx = 0, int yy = 0) :x(xx), y(yy) {}
bool operator==(queen const &q) const
{
return (x == q.x) || (y == q.y) || (x + y == q.x + q.y) || (x - y == q.x - q.y);
}
bool operator!=(queen const &q) const { return !(*this == q); }
};
int checkout(stack<queen> &solu, queen &q)
{
int num = 0;
stack<queen> temp(solu);
while (temp.size())
{
auto tm = temp.top(); temp.pop();
if (q == tm)
num++;
}
return num;
}
tuple<int,int> placequeens(int n)
{
int ncheck = 0 , nsolution = 0;
queen q(0, 0); //初始位置为0,0的零点
stack<queen> solu;
do
{
if (n <= solu.size() || n <= q.y) //越界,即当前行没有找到对应的点,故回溯上一行重新找点
{
auto tm = solu.top(); solu.pop();
q = tm;
q.y++; //为防止继续重复上一行的选点,直接在处理回溯时将其列数加1
}
else
{
while ((q.y < n) && (checkout(solu, q))) //将当前queen和栈内的数据比较,是否有干涉的情况产生
{
q.y++; //出现干涉即右移一列计算比对
ncheck++;
}
if (n > q.y) //到了这一步,即代表此时的位置是符合要求的,只需要判断此时是否越界即可
{
solu.push(q); //未越界则节点入栈
if (n <= solu.size()) nsolution++; //若栈的元素数目达到了解的数目,则solution++表示全局解已经找到
q.x++; q.y = 0; //进入下一行并重置列数,进行进一步搜索
}
}
} while ((0 < q.x) || (q.y < n)); //所有分支均以或穷举或剪枝后 //所有的用例测试到最后,肯定就到达了q.x=0,q.y=n的地方,故跳出
tuple<int, int> tmm({ ncheck,nsolution });
return tmm;
}
int main_shitanhuisufa()
{
int n;
while (cin >> n)
{
auto temp = placequeens(n);
cout << get<1>(temp) << " solution(s) found after "<< get<0>(temp) << " check(s) for "<< n << " queen(s)\n"; //输出解的总数
}
}
程序运行思路:循环输入n,输出X解的个数在Y次试探中查找N个皇后(以及棋盘大小),问题就是从10开始速度明显变了慢了很多= =
最终的结果如下: