大学时光是浪漫的,女生是浪漫的,圣诞更是浪漫的,但是Rabbit和Grass这两个大学女生在今年的圣诞节却表现得一点都不浪漫:不去逛商场,不去逛公园,不去和AC男约会,两个人竟然猫在寝食下棋……
说是下棋,其实只是一个简单的小游戏而已,游戏的规则是这样的:
1、棋盘包含1*n个方格,方格从左到右分别编号为0,1,2,…,n-1;
2、m个棋子放在棋盘的方格上,方格可以为空,也可以放多于一个的棋子;
3、双方轮流走棋;
4、每一步可以选择任意一个棋子向左移动到任意的位置(可以多个棋子位于同一个方格),当然,任何棋子不能超出棋盘边界;
5、如果所有的棋子都位于最左边(即编号为0的位置),则游戏结束,并且规定最后走棋的一方为胜者。
对于本题,你不需要考虑n的大小(我们可以假设在初始状态,棋子总是位于棋盘的适当位置)。下面的示意图即为一个1*15的棋盘,共有6个棋子,其中,编号8的位置有两个棋子。
大家知道,虽然偶尔不够浪漫,但是Rabbit和Grass都是冰雪聪明的女生,如果每次都是Rabbit先走棋,请输出最后的结果。
说是下棋,其实只是一个简单的小游戏而已,游戏的规则是这样的:
1、棋盘包含1*n个方格,方格从左到右分别编号为0,1,2,…,n-1;
2、m个棋子放在棋盘的方格上,方格可以为空,也可以放多于一个的棋子;
3、双方轮流走棋;
4、每一步可以选择任意一个棋子向左移动到任意的位置(可以多个棋子位于同一个方格),当然,任何棋子不能超出棋盘边界;
5、如果所有的棋子都位于最左边(即编号为0的位置),则游戏结束,并且规定最后走棋的一方为胜者。
对于本题,你不需要考虑n的大小(我们可以假设在初始状态,棋子总是位于棋盘的适当位置)。下面的示意图即为一个1*15的棋盘,共有6个棋子,其中,编号8的位置有两个棋子。
大家知道,虽然偶尔不够浪漫,但是Rabbit和Grass都是冰雪聪明的女生,如果每次都是Rabbit先走棋,请输出最后的结果。
Input
输入数据包含多组测试用例,每个测试用例占二行,首先一行包含一个整数m(0<=m<=1000),表示本测试用例的棋子数目,紧跟着的一行包含m个整数Ki(i=1…m; 0<=Ki<=1000),分别表示m个棋子初始的位置,m=0则结束输入。
Output
如果Rabbit能赢的话,请输出“Rabbit Win!”,否则请输出“Grass Win!”,每个实例的输出占一行。
Sample Input
2
3 5
3
3 5 6
0
Sample Output
Rabbit Win! Grass Win! 典型的尼姆博奕,把每个棋子当做一堆石子,棋子的位置当做石子的个数,按照尼姆博奕的规则,当每堆石子的个数做异或运算,结果为零时,处于必败局面,否则处于必胜局面。#include<iostream> #include<cstdio> #include<algorithm> using namespace std; int main() { int n,m,sum; while(~scanf("%d",&n)&&n) { sum=0; for(int i=0;i<n;i++) { scanf("%d",&m); sum^=m;//异或运算就是把数转化为二进制,然后按位异或,相同时该位为0,不同时为1. } if(sum==0) puts("Grass Win!"); else puts("Rabbit Win!"); } }