Stable Diffusion 出图必备脚本神器

细心的同学看完前面的课程

肯定会发现案例中经常会有一些参数对比图、混合模式的对比这种效果

这个就是 SD 提供的脚本功能,

这一节我们就来讲讲 SD 最常使用的三个脚本工具: 提示词矩阵、批量提示词和X/Y/Z图表

一 Prompt Matrix 提示词矩阵

如果我们希望比较几个提示词的融合关系,

那我们可以使用 提示词矩阵来实现我们的需求。

比如:我们想要比较 复古风格和Q版风格 对现有 prompt 的影响,那么我们就可以根据以下步骤操作

  1. 打开 提示矩阵脚本功能
  2. 给出提示词 (|chibi|retro artstyle)
best quality, ultra-detailed, masterpiece, hires, 8k,

pov,stand up,
1girl,big eye,wear long hoodie,casual pants
|chibi|retro artstyle

最终就可以得到四张效果图:

二 X/Y/Z 图表

1.字符类参数

如果我们希望对比不同的参数对原有的 prompt 的影响。

比如迭代步数、模型或者是prompt中的提示词,那么就可以使用 这个脚本来实现。

**举个例子:**我们希望比较不同的采样方法(Euler a, DPM++ 2M Karras)来渲染不同的发型(ahoge, blunt bangs, drill , bun, wavy),他们的效果是什么样的

best quality, ultra-detailed, masterpiece, hires, 8k,

pov,stand up,
1girl,big eye,wear long hoodie,casual pants,
ahoge hair

先看效果:

这个例子中:

  • X轴-提示词搜索/替换:SD 会拿着 X轴值中的第一个词在 prompt 中找,然后进行挨个替换成 X轴中的每一个提示词进行出题
  • Y轴-采样方法:这个就直接将 Y轴值中的每一个采样方法进行挨个使用

2.数值类参数

还有一种是数值类的参数比较,比如迭代步数

举个例子: 我们想要在同一模型下,比较不同迭代步数(10-90)对出图的影响,跨度步数为10,每10步出一张图,那我们就可以这样填

如果我们不想按10步为跨度进行出图。希望整个范围就出5张,让 SD 自己平均划分。

举个例子: 设置的迭代步数为 10-90,希望出十张图,那么我们可以直接填写 10-90[10] 即可

三 批量提示词出图

如果我们希望根据多个不同的 prompt 提示词进行出图,每个prompt的反向词,参数也不同,那么我们就可以使用这种方式来进行批量出图。

首先 :我们先打开 批量提示词出图 脚本

目前支持两种方式: 直接输入文本、上传文件

不管是直接文本输入还是上传文件,其格式是一样的,每一行只写一条记录

格式:

–prompt “1dog” --negative_prompt “nsfw” --width 512 --height 512 --sample_name “Euler a” --step 20 --batch_size 1 --cfg_scale 7 --seed -1

  • –prompt 正向提示词
  • –negative_prompt 反向提示词
  • –sample_name 采样方法
  • –cfg_scale 相关性
“sd_model”:模型名称

“outpath_samples”:样本输出路径

“outpath_grids”:网格输出路径

“prompt_for_display”:用于展示的提示词

“prompt”:正向提示词

“negative_prompt”:负面提示词

“styles”:提示词模板(你自己设置的提示词模板)

“seed”:随机种子

“subseed_strength”:次级种子强度

“subseed”:次级种子

“seed_resize_from_h”:次级种子高度

“seed_resize_from_w”:次级种子宽度

“sampler_index”:采样器索引

“sampler_name”:采样器名称

“batch_size”:生成批次

“n_iter”:每批数量

“steps”:采样迭代步数

“cfg_scale”:提词相关性

“width”:宽度

“height”:高度

“restore_faces”:面部修复

“tiling”:平铺

“do_not_save_samples”:不保存样本

“do_not_save_grid”:不保存网格

举个例子: 给出两个完整的 prompt,一个是画一只猫,一个是狗,那么我们就可以在文本输入框内填

--prompt "1dog" --negative_prompt "nsfw" --width 512 --height 512 --sample_name "Euler a" --step 20 --batch_size 1 --cfg_scale 7 --seed -1 
--prompt "1cat" --negative_prompt "nsfw" --width 512 --height 768 --sample_name "Euler a" --step 20 --batch_size 1 --cfg_scale 7 --seed -1 

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

<think>嗯,用户问的是如何在Stable Diffusion里生成带有XY轴的脚本像。首先,我需要回忆一下之前用户提供的引用内容,里面提到了两种方式,使用X/Y/Z plot脚本,还有附加网络的方法。用户可能需要一步步的指导,所以得把步骤理清楚。 首先,用户可能已经知道基本操作,但需要具体的步骤。比如,如何放置Lora模型到正确的目录,然后在脚本里选择X轴和Y轴的参数。记得要提到两种方式,因为引用里提到了两种不同的方法,可能用户想了解不同的情况。 然后,用户可能需要示例代码,不过Stable Diffusion WebUI主要是形界面操作,可能没有实际的代码,但可能有脚本配置的步骤。比如在方式一中,X轴用提示词搜索替换,Y轴是强度值,然后prompt里用NUM和STRENGTH变量。这部分需要详细说明,让用户明白如何替换变量。 另外,用户提到的示例代码,可能需要解释脚本的参数设置,比如X轴类型、值,Y轴类型、值,以及如何在prompt中正确引用Lora模型。可能需要分步骤说明,每一步操作对应的界面选项是什么,避免用户混淆。 还要注意引用里的目录结构,比如models\Lora和extensions\sd-webui-additional-networks\models\lora的不同,两种方式对应的模型存放位置不同,这点必须明确指,否则用户可能会放错地方导致脚本无法找到模型。 可能用户会遇到的常见问题,比如如何生成多个组合像,是否需要在prompt里使用特定的语法,比如lora:模型名-NUM:STRENGTH,这里的NUM和STRENGTH是占位符,会被脚本替换。需要强调变量名的选择要一致,否则替换不成功。 另外,用户可能需要知道生成后的结果如何查看,比如像会排列成网格,X轴和Y轴对应不同的参数变化。这部分在回答里也需要提及,让用户有预期。 最后,相关问题部分需要考虑用户可能的后续疑问,比如如何分析生成的像,如何调整参数范围,或者如何处理生成失败的情况。但根据引用内容,可能问题集中在使用方法和优化步骤上,所以相关问题可以围绕这些方面展开。 总结一下,回答需要结构清晰,分步骤讲解两种方式,强调目录位置、脚本配置、prompt格式,并给示例。同时确保用户理解变量替换的逻辑,以及最终生成的效果。最后的问题部分要引导用户深入探索优化和应用场景。</think># Stable Diffusion生成XY轴脚本像的分步指南 ### 一、环境准备 1. 将训练好的Lora模型放入指定目录: - 方式一:放入`models\Lora\`目录[^1] - 方式二:放入`extensions\sd-webui-additional-networks\models\lora`目录[^1] ### 二、X/Y/Z脚本配置(方式一) ```python # 伪代码示例:X/Y轴参数配置逻辑 x_type = "提示词搜索/替换" x_values = "NUM,000001,000002,...,000010" # 对应Lora版本号 y_type = "提示词搜索/替换" y_values = "STRENGTH,0.1,0.2,...,1.0" # 权重梯度 ``` 1. 在WebUI脚本选择栏选择`X/Y/Z plot` 2. X轴设置: - 类型:提示词搜索/替换 - 值:NUM,000001,000002,...,000010[^1] 3. Y轴设置: - 类型:提示词搜索/替换 - 值:STRENGTH,0.1,0.2,...,1.0[^1] ### 三、Prompt编写规范 $$ \text{lora:模型名-NUM:STRENGTH} $$ 示例: ``` (lora:character_v2-NUM:STRENGTH), portrait of a girl in spring ``` *注:NUM和STRENGTH为占位符变量,系统会自动替换[^1]* ### 四、附加网络方法(方式二) 1. X轴选择`[可选附加网络]模块1` 2. Y轴选择`[可选附加网络]权重1` 3. 值域设置: ```python # 伪代码示例:多模型选择逻辑 selected_loras = get_lora_list() weights = [0.1*i for i in range(1,11)] ``` ### 五、生成效果 最终生成$m \times n$的网格,其中: - X轴对应不同模型版本(离散值) - Y轴对应权重梯度(连续值) 每个单元格像满足: $$ I_{ij} = G(P + \alpha_j L_i) $$ 其中$G$为生成函数,$P$为基础提示词,$L_i$为第i个Lora模型,$\alpha_j$为第j级权重[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值