【机器学习基础】一元线性回归(适合初学者的保姆级文章)

本文介绍了机器学习中的基础概念,如线性模型、一元线性回归及其模型表示,重点阐述了如何通过代价函数和梯度下降法求解参数,包括随机梯度下降和批量梯度下降的应用。通过实例和数学公式详细解析了这一过程,为初学者提供了一个从基础到实践的引导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🚀个人主页为梦而生~ 关注我一起学习吧!
💡专栏机器学习 欢迎订阅!后面的内容会越来越有意思~
💡往期推荐
【机器学习基础】机器学习入门(1)
【机器学习基础】机器学习入门(2)
【机器学习基础】机器学习的基本术语
【机器学习基础】机器学习的模型评估(评估方法及性能度量原理及主要公式)
💡本期内容:本篇文章开始机器学习的模型,我们从最简单的开始,所以从线性的开始,而线性模型中一元的最简单,最基础,所以先讲解一下一元线性回归~超级基础的文章,赶紧收藏学习吧!!!



1 线性模型

给定由d个属性描述的示例x,其中xi是x在第i个属性上的取值,线性模型(linear model)试图学得一个通过属性的线性组合来进行预测的函数,即
请添加图片描述
一般用向量形式写成请添加图片描述
w和b学得之后,模型就得以确定


2 一元线性回归

一元线性回归是一种统计分析方法,用于建立一个自变量和一个因变量之间的线性关系模型。在一元线性回归中,只有一个自变量(即解释变量)与一个因变量(即被解释变量)相关。

该模型的目标是找到一个最佳拟合直线,使得该直线能够最好地拟合已知的数据点并预测未知的数据点。最常用的评估拟合程度的指标是最小二乘法,它通过最小化观测值与拟合直线的差距的平方和来确定最佳拟合直线。

一元线性回归的模型可以表示为:Y = β₀ + β₁X + ε 其中,Y 是因变量,X 是自变量,β₀ 和 β₁ 是模型的系数,ε
是随机误差项。

通过一元线性回归,我们可以估计自变量和因变量之间的关系,并进行预测和推断。

以上是官方解释,看不懂没事,我们来举一个经典的例子:

2.1 引例及模型表示

这个例子是关于预测房屋价格的,我们已知这样一个数据集:
在这里插入图片描述
横坐标表示房屋的面积,纵坐标表示房屋的价格。我们的目标是预测在给定房屋面积的情况下,房屋的价格是多少。例如,如果你的朋友的房子是1250平方英尺大小,你可以使用上面的数据集来预测其可能售价。那么,我们应该如何进行预测呢?

你可以构建一个模型,比如拟合一条直线,如上图所示。从这个模型来看,也许你可以告诉你的朋友,他可以以大约220000(美元)左右的价格卖掉这个房子。这其实就是一个回归问题的例子!
在这里插入图片描述
Notation:

  • 𝑚:训练集中实例的数量
  • 𝑥 :特征/输入变量
  • 𝑦 :目标变量/输出变量
  • (𝑥, 𝑦) :训练集中的实例
  • (x(i), y(i)):第𝑖 个观察实例
  • ℎ :学习算法的解决方案或函数也称为假设(hypothesis)

ℎ是一个函数,也是模型,代表的是

评论 45
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

为梦而生~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值