滴滴出行在其顺风车业务中构建了实时数仓,以满足业务对数据实时性的需求。
业务需求和数据规模:
顺风车业务涉及订单、支付、用户行为等多种数据类型,实时数据量巨大。
实时数仓架构设计:
滴滴的实时数仓架构主要包括以下层次:
-
ODS(Operational Data Store,操作数据存储层):
- **功能:**接收并存储来自订单、支付等系统的实时数据,保持数据的原始状态。
- **数据源:**包括订单相关的 binlog 日志、埋点日志等,通过 Kafka 等消息队列进行传输。
-
DWD(Data Warehouse Detail,明细层):
- **功能:**对 ODS 层的数据进行清洗、过滤和标准化处理,生成业务明细数据。
- **特点:**基于业务过程进行建模,构建最细粒度的明细事实表,适当冗余重要维度属性,形成宽表,提升数据复用性。
-
DWS(Data Warehouse Summary,汇总层):
- **功能:**对 DWD 层的数据进行汇总和聚合,生成主题性的汇总数据,满足业务的实时分析需求。
- **特点:**减少数据冗余,提升查询效率,支持实时 OLAP 分析、实时数据看板等应用场景。
-
ADS(Application Data Service,应用层):
- **功能:**面向具体业务需求,提供定制化的数据服务,直接支撑报表、监控和 BI 查询等应用。
- **特点:**数据高度定制化,直接服务于业务需求,具有强约束性。
数据链路:
数据从各业务系统通过日志采集工具(如 Flume、Kafka)进入 ODS 层,经过实时计算引擎(如 Flink)处理后,依次进入 DWD、DWS 和 ADS 层。
在每个层级,数据都会经过相应的清洗、转换和聚合处理,最终形成满足业务需求的实时数据服务。
通过这样的架构设计,滴滴实现了顺风车业务的实时数据处理,满足了业务对数据实时性和准确性的要求。
20000字详解大厂实时数仓建设
得物供应链复杂业务实时数仓建设之路
实时数仓项目需求及架构设计
实时数仓项目《一》-实时数仓架构
实时数仓方案五花八门,实际落地如何选型和构建!
大数据-数据仓库-实时数仓架构分析
实时数仓架构设计与选型
实时数据仓库的发展、架构和趋势