实时数仓:滴滴出行在其顺风车业务中构建了实时数仓

滴滴出行在其顺风车业务中构建了实时数仓,以满足业务对数据实时性的需求。

业务需求和数据规模:

顺风车业务涉及订单、支付、用户行为等多种数据类型,实时数据量巨大。

实时数仓架构设计:

滴滴的实时数仓架构主要包括以下层次:

  1. ODS(Operational Data Store,操作数据存储层):

    • **功能:**接收并存储来自订单、支付等系统的实时数据,保持数据的原始状态。
    • **数据源:**包括订单相关的 binlog 日志、埋点日志等,通过 Kafka 等消息队列进行传输。
  2. DWD(Data Warehouse Detail,明细层):

    • **功能:**对 ODS 层的数据进行清洗、过滤和标准化处理,生成业务明细数据。
    • **特点:**基于业务过程进行建模,构建最细粒度的明细事实表,适当冗余重要维度属性,形成宽表,提升数据复用性。
  3. DWS(Data Warehouse Summary,汇总层):

    • **功能:**对 DWD 层的数据进行汇总和聚合,生成主题性的汇总数据,满足业务的实时分析需求。
    • **特点:**减少数据冗余,提升查询效率,支持实时 OLAP 分析、实时数据看板等应用场景。
  4. ADS(Application Data Service,应用层):

    • **功能:**面向具体业务需求,提供定制化的数据服务,直接支撑报表、监控和 BI 查询等应用。
    • **特点:**数据高度定制化,直接服务于业务需求,具有强约束性。

数据链路:

数据从各业务系统通过日志采集工具(如 Flume、Kafka)进入 ODS 层,经过实时计算引擎(如 Flink)处理后,依次进入 DWD、DWS 和 ADS 层。

在每个层级,数据都会经过相应的清洗、转换和聚合处理,最终形成满足业务需求的实时数据服务。

通过这样的架构设计,滴滴实现了顺风车业务的实时数据处理,满足了业务对数据实时性和准确性的要求。

20000字详解大厂实时数仓建设

得物供应链复杂业务实时数仓建设之路

实时数仓项目需求及架构设计

实时数仓项目《一》-实时数仓架构

实时数仓方案五花八门,实际落地如何选型和构建!

大数据-数据仓库-实时数仓架构分析

实时数仓架构设计与选型

实时数据仓库的发展、架构和趋势

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值