智能客服意图识别与多轮对话的语料准备需围绕用户需求多样性、场景覆盖度及上下文关联性展开。以下是语料准备的关键要点及以壹向智能客服为例的对话样例:
一、语料准备的核心要求
-
意图分类与覆盖
- 数据多样性:收集用户可能涉及的所有意图类别(如咨询、投诉、售后、技术支持等),覆盖不同场景下的表达方式,包括口语化、方言、简写等。
- 同义扩展:针对同一意图,需准备多种表达形式(如“怎么退货”和“退换货流程是什么”),增强模型泛化能力。
-
多轮对话逻辑
- 上下文关联:设计包含上下文依赖的对话链(如用户先咨询产品参数,再追问价格或售后服务),标注对话状态和实体(如订单号、产品型号)。
- 分支场景:考虑用户可能的追问或转移话题(如从“退货”转至“优惠活动”),覆盖正向引导和异常处理路径。
-
数据标注与结构化
- 意图标签:明确每句话的意图(如“退货申请”“物流查询”)和实体信息(如时间、地址)。
- 知识库关联:将高频问题与知识库标准答案匹配,确保回答的准确性和一致性。
二、对话语料样例(以电商场景为例)
样例1:售前咨询(多轮意图识别)
用户:这款手机的屏幕在强光下能看清楚吗?
客服:您好!您提到的强光场景下屏幕显示问题,XX手机采用AMOLED屏,支持最高1500尼特亮度,户外使用清晰度较好。需要了解其他参数吗?
用户:电池容量多大?
客服:电池容量为5000mAh,支持66W快充。您是否需要对比其他型号?
用户:和Y型号比哪个续航更好?
客服:Y型号电池容量为4800mAh,快充功率相同。根据测试数据,XX型号的综合续航多出约2小时。
意图链:屏幕参数咨询 → 电池容量查询 → 竞品对比。
样例2:售后问题处理(上下文依赖)
用户:我想退货,订单号是ESH20250314。
客服:已查询到您的订单,退货原因为?
用户:商品有划痕,和描述不符。
客服:已记录,请上传商品照片至“我的订单-售后服务”,审核通过后我们将安排取件。预计退款到账时间为3个工作日。还有其他问题吗?
用户:运费谁承担?
客服:若确认质量问题,运费由我们承担,退货时会自动生成免运费标签。
意图链:退货申请 → 原因说明 → 流程确认 → 费用咨询。
样例3:技术支持(多轮引导)
用户:路由器连不上网了。
客服:请确认路由器指示灯是否为绿色常亮?
用户:是红色闪烁。
客服:建议重启路由器,拔掉电源等待10秒后重插。若仍无效,请检查宽带账号是否欠费。
用户:重启后还是红色,账号余额充足。
客服:可能是光猫故障,已为您预约工程师上门检测,请确认地址:XX市XX区XX路XX号。
意图链:故障报修 → 状态排查 → 解决方案 → 服务预约。
三、数据来源与优化建议
- 来源:历史客服对话记录、用户评价反馈、模拟场景测试。
- 优化方向:
- 增加长尾问题语料(如小众需求或复杂场景);
- 结合情感分析数据,优化对用户情绪的响应(如安抚话术);
- 定期更新知识库,匹配产品迭代与政策变动。
通过系统化的语料设计与动态优化,可显著提升智能客服的意图识别准确率和多轮对话流畅性。