深度学习
文章平均质量分 55
大东bigeast
这个作者很懒,什么都没留下…
展开
-
如何理解熵值和KL-散度
参考https://www.jianshu.com/p/43318a3dc715看完这篇博文之后我几乎明白了熵值和KL散度的意义。熵值以下是熵值的计算公式:根据我的理解,熵值是用来衡量传输某数据的分布概率值要使用的存储空间,熵值公式中的p(x)就是某数据出现的概率,例如有两颗蛀牙的概率为p(2)。最多有10颗牙,则N=10;log的底数是任意的,当底数是2时,则logp(x)则代表传输这个概率值需要的比特位数,再乘以这个概率值p(x)本身,就是代表求期望的意思了。所以熵值就代表传输这个数据的一原创 2021-02-21 10:47:15 · 980 阅读 · 0 评论 -
计算机硕士:如何选择一个科研方向或课题
参考https://new.qq.com/rain/a/20210203A0CTR400很多时候光努力不够,方向更重要。新手如何选博士几年的topic,有两个问题值得思考:能不能快速上手? 有几个简单的评判标准:state-of-the-art的paper有没有开源的代码?目的是你能迅速复现baseline,熟悉整体pipeline(如怎样预处理,后处理),加深对实现和细节的理解有没有对这个topic有hands-on经验的师兄,或者community里面approachable的前辈?目的是,当你原创 2021-02-16 15:06:06 · 1666 阅读 · 0 评论 -
真正讲明白为什么LSTM可以防止梯度消失或爆炸
参考https://weberna.github.io/blog/2017/11/15/LSTM-Vanishing-Gradients.html#fn:3要讲明白为什么LSTM可以防止梯度消失,就是要讲明白、这两个求导的连乘为什么不是无穷大或0.百度上搜索这个问题的解答基本上都模糊不清或者是错误的,而且关于的求导公式基本是错的,太误人子弟了!以下摘两个我看的阅读量比较高的错误博客。错误示范1:https://zhuanlan.zhihu.com/p/28749444这个博客的求导.原创 2021-02-07 18:14:01 · 2909 阅读 · 1 评论