简单算法—筛法求素数

  筛法求素数的想法就是任意合数都可以表示为素数的积,所以我们找到一个素数便可以筛掉所有他的倍数,这样找素数的范围不断的缩小,最后剩下的就都是素数。

 

#include <iostream>
#include<cstring>
using namespace std;

const int n = 100;

void prime(int a[])
{
    for(int i = 1; i <= n ;++i)
    {
        if(!a[i])                //找到素数
            for(int j = 2;j * i <= n; ++j)
            {
                a[i*j] = 1;       //筛掉所有该素数的倍数
            }
    }
}

int main()
{
    int a[n];
    memset(a, 0, sizeof(a));  //以数组的下标来表示数,数组的值都初始化为0
    a[0] = 1;
    a[1] = 1;    //1和0不是素数
    prime(a);
    for(int h = 1; h <= n; ++h)
    {
        if(!a[h])               //值为0则是素数,输出
            cout << h << endl;
    }
    return 0;
}

都只是作为自己学习的记录,可能会有些疏忽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值