树莓派最新64位系统安装Pytorch和OpenCV

该文章指导如何在树莓派的最新64位(aarch64)系统上设置镜像源,特别是使用清华源,并详细说明了如何通过修改sources.list和raspi.list文件来换源。接着,文章提供了简洁的命令行步骤来安装OpenCV和Pytorch,强调可以直接通过python-mpip安装,而无需下载whl文件或预先安装特定库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

树莓派官方最新64位(aarch64)系统安装Pytorch和OpenCV

原文地址

一、设置镜像源

armv7l是armhf的衍生,而在树莓派中armhf默认是指32位(我不确定这个说法对不对,但在清华源里,armv7l用户指的就是32位的用户)。因为我们使用的是arm64架构(也就是安装的64位系统),所以我们选择aarch64用户的配置。用以下内容替换原“/etc/apt/sources.list”里的内容

  1. 先替换sources.list里面的内容
sudo nano /etc/apt/sources.list

用下面的内容替换

# aarch64 用户:编辑 `/etc/apt/sources.list` 文件,用以下内容取代:
# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye main contrib non-free
# deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye main contrib non-free
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-updates main contrib non-free
# deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-updates main contrib non-free
deb https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-backports main contrib non-free
# deb-src https://mirrors.tuna.tsinghua.edu.cn/debian/ bullseye-backports main contrib non-free
deb https://mirrors.tuna.tsinghua.edu.cn/debian-security bullseye-security main contrib non-free
# deb-src https://mirrors.tuna.tsinghua.edu.cn/debian-security bullseye-security main contrib non-free
  1. 再替换raspi.list里面的内容
sudo nano /etc/apt/sources.list.d/raspi.list

用下面的内容替换

# 对于两个架构,编辑 `/etc/apt/sources.list.d/raspi.list` 文件,删除原文件所有内容,用以下内容取代:
deb http://mirrors.tuna.tsinghua.edu.cn/raspberrypi/ bullseye main
  1. 换源之后更新源
sudo apt-get update
sudo apt-get upgrade

二、安装OpenCV

python -m pip install opencv-python

网上很多文章说下载whl文件,比较麻烦吗。还有一些教程说先安装libxxxxx库,再安装opencv,这些库可以需要用的时候再安装。

三、安装Pytorch

python -m pip install torch

其它的需要使用时再安装即可。

### 如何在Raspberry Pi上安装PyTorch 为了在Raspberry Pi上成功部署运行PyTorch,需遵循一系列特定的操作流程来确保兼容性性能优化。 #### 准备工作环境 确认已安装最新版本的64Raspberry Pi操作系统[^1]。这一步骤对于后续软件包的成功安装至关重要,因为某些依赖项可能仅支持64架构。 #### 安装必要的依赖库 除了基础系统外,还需要额外配置一些Python开发工具链以及科学计算所需的库文件。可以通过执行如下命令完成初步设置: ```bash sudo apt update && sudo apt upgrade -y sudo apt install python3-pip build-essential cmake git unzip pkg-config libjpeg-dev libpng-dev wget curl gfortran libopenblas-dev liblapack-dev cython3 pip3 install --upgrade pip setuptools wheel ``` #### 获取并编译OpenBLAS 由于官方预构建二进制文件并不总是适用于ARM平台上的Raspberry Pi,因此建议自行编译适合硬件特性的线性代数加速器——OpenBLAS。此过程有助于提高矩阵运算效率,从而间接加快机器学习模型训练速度。 ```bash git clone https://github.com/xianyi/OpenBLAS.git cd OpenBLAS/ make NO_AFFINITY=1 USE_OPENMP=0 NUM_THREADS=4 DYNAMIC_ARCH=1 TARGET=ARMV8 sudo make PREFIX=/usr/local install ``` #### 编译安装PyTorch 考虑到资源有限的小型嵌入式设备特性,推荐采用轻量化策略定制化编译PyTorch源码。具体操作可参照GitHub仓库中的说明文档进行调整;这里提供了一个简化版脚本供参考: ```bash # 下载指定分支下的PyTorch源码 git clone --branch v1.12.0 https://github.com/pytorch/pytorch.git pytorch_src cd pytorch_src/ # 设置环境变量以启用NEON指令集优化 export CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" export ATEN_NO_TEST=1 export MAX_JOBS=$(nproc) # 开始编译 TORCH_CUDA_ARCH_LIST="5.3" BUILD_CAFFE2_OPS=OFF python setup.py bdist_wheel ``` 请注意上述示例基于v1.12.0版本,在实际应用时应根据需求选择合适的稳定发行版号,并关注项目主页获取最新的编译选项指导。 #### 验证安装成果 一旦顺利完成以上各阶段的任务之后,则可通过简单的测试程序检验PyTorch是否能够正常运作于当前环境中。 ```python import torch print(torch.__version__) x = torch.rand(5, 3) print(x) if torch.cuda.is_available(): print('CUDA is available') else: print('Running on CPU only.') ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

root@z~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值