表情识别LDTP算法(Local Directional Ternary Pattern for Facial Expression Recognition TIP 2017)
1.表情识别流程
2.研究背景
根据提取对象的不同,可以分为静态方法和动态方法。
1)静态图像的特征提取(用于无变化的静止图片):
基于几何特征(AAM,ASM等):主要是通过对主要面部组件的位置关系进行编码,例如眼睛,鼻子,嘴巴等,可以得到五官的大小、位置及五官之间的相互比例等空间几何信息,可通过这些信息进行人脸表情识别。然而,这种识别的性能依赖于面部组件的确切位置,而这些位置很难根据面部表情的外观变化来察觉。
基于外貌特征(Gabor滤波器,2DPCA,LBP,LDP,LDN等):该方法就可以直接避免上述问题,通过对整个面部图像或局部人脸区域使用图像滤波器滤波,进而检测到人脸外观变化时面部组件的确切位置,以用来提取与表情相关的特征。
2)动态图像序列的特征提取(动态的图像序列 ):
动态的图像序列反映了人脸表情的一个动态变化过程,主要的特征提取方法有光流法,特征点跟踪法,模型跟