表情识别LDTP算法(Local Directional Ternary Pattern for Facial Expression Recognition TIP 2017)

本文介绍了一种表情识别算法——LDTP(Local Directional Ternary Pattern),该算法解决了基于边缘的局部特征直方图表示在面部表情识别中的噪声敏感性和空间信息不足的问题。通过Robinson掩码卷积和阈值比较进行编码,同时强调了与情绪相关特征的空间信息,提高了表情分类的准确性。利用SVM分类器进行一对一分类,并使用dlib库标记关键特征点。
摘要由CSDN通过智能技术生成

表情识别LDTP算法(Local Directional Ternary Pattern for Facial Expression Recognition TIP 2017)

1.表情识别流程
在这里插入图片描述

2.研究背景
根据提取对象的不同,可以分为静态方法和动态方法。
1)静态图像的特征提取(用于无变化的静止图片):
基于几何特征(AAM,ASM等):主要是通过对主要面部组件的位置关系进行编码,例如眼睛,鼻子,嘴巴等,可以得到五官的大小、位置及五官之间的相互比例等空间几何信息,可通过这些信息进行人脸表情识别。然而,这种识别的性能依赖于面部组件的确切位置,而这些位置很难根据面部表情的外观变化来察觉。
基于外貌特征(Gabor滤波器,2DPCA,LBP,LDP,LDN等):该方法就可以直接避免上述问题,通过对整个面部图像或局部人脸区域使用图像滤波器滤波,进而检测到人脸外观变化时面部组件的确切位置,以用来提取与表情相关的特征。
2)动态图像序列的特征提取(动态的图像序列 ):
动态的图像序列反映了人脸表情的一个动态变化过程,主要的特征提取方法有光流法,特征点跟踪法,模型跟

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值