学姐的线段树,据说是国内常用版本...我的完全二叉树版线段树被嘲笑奇葩啊!!!你妹= =,写个线段树还被说奇葩
#include<iostream>
#include<cstdio>
#include<map>
#include<string.h>
using namespace std;
#define LL long long
#define MAXN 101010
LL sum[MAXN<<2],add[MAXN<<2],a[MAXN<<2];
void pushup(int rt){
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
}
void pushdown(int rt,int len) {
if (add[rt]) {
add[rt<<1]+=add[rt];
add[rt<<1|1]+=add[rt];
sum[rt<<1]+=add[rt]*(len-(len>>1));
sum[rt<<1|1]+=add[rt]*(len>>1);
add[rt]=0;
}
}
void build(int l,int r,int rt){
add[rt]=0;
if (l==r) {
sum[rt]=a[l]; return ;
}
int mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
pushup(rt);
}
void update(int x,int y,LL c,int l,int r,int rt) {
if (x<=l&&y>=r) {
add[rt]+=c; sum[rt]+=c*(r-l+1);
return ;
}
int mid=(l+r)>>1;
pushdown(rt,r-l+1);
if (x<=mid) update(x,y,c,l,mid,rt<<1);
if (y>mid) update(x,y,c,mid+1,r,rt<<1|1);
pushup(rt);
}
LL query(int x,int y,int l,int r,int rt){
if (x<=l&&y>=r)
return sum[rt];
int mid=(l+r)>>1;
pushdown(rt,r-l+1);
LL ans=0;
if (x<=mid) ans+=query(x,y,l,mid,rt<<1);
if (y>mid) ans+=query(x,y,mid+1,r,rt<<1|1);
return ans;
}
int main(){
int n,m,x,y,c;
char buff[20];
while (scanf("%d%d",&n,&m)!=EOF) {
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]);
build(1,n,1);
while (m--) {
scanf("%s%d%d",buff,&x,&y);
if (buff[0]=='Q') printf("%lld\n",query(x,y,1,n,1));
else {
scanf("%d",&c);
update(x,y,c,1,n,1);
}
}
}
return 0;
}
我自己的..国内罕见完全二叉树版本的线段树+区间更新。。。
区间更新及查询原理
若更新一个区间的值,必然要影响到其父节点和子节点得值。
进行区间更新的时候要新建一个标记数组,
对于要更新节点的父节点,我们直接把更新的影响更新到数据数组中,查询的时候如果覆盖父节点,就直接返回数据值,这个数值包含了其所有被更新的儿子所产生的影响。
对于要更新的节点的子节点,被完全覆盖的需要更新的节点只更新影响数组,在需要更新儿子节点的时候,把标记值作用于此节点并且把标记值向下传递。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll MAX_N=700000;
ll data[MAX_N];//every element ll the segment should be added
ll datb[MAX_N];//apart from data , the left sum
ll n;
void init(ll n_)
{
memset(data,0,sizeof(data));
memset(datb,0,sizeof(datb));
n=1;
while(n<n_)
{
n*=2;
}
}
void update(int k,int x)
{
k=k+(n-1);
datb[k]+=x;
while(k>1)
{
k/=2;
datb[k]+=x;
}
}
void add(ll a,ll b,ll k,ll l,ll r,ll x)//区间更新的时候懒标记和总体值2选1更新
{
if(a<=l&&r<=b)
data[k]+=x;//当有一段被整体更新的时候懒标记不再继续向下进行传递
else if(a<=r&&l<=b)
{
datb[k]+=(min(r,b)-max(a,l)+1)*x;//不完全包含的时候增加包含字段的累加值,但不会增加懒标记
add(a,b,k*2,l,(l+r)/2,x);
add(a,b,k*2+1,(l+r)/2+1,r,x);
}
}
ll query(ll a,ll b,ll k,ll l,ll r)
{
if(b<l||a>r) return 0;
if(a<=l&&r<=b)
{
return (r-l+1)*data[k]+datb[k];//完全包含的时候返回懒标记和数值
}
ll res=(min(b,r)-max(a,l)+1)*data[k];//本层的懒标记
ll v1=query(a,b,k*2,l,(l+r)/2);
ll v2=query(a,b,k*2+1,(l+r)/2+1,r);
return res+v1+v2;
}
int main()
{
int m,nn;
while(scanf("%d%d",&nn,&m)!=EOF){
init(nn);
for(int i=1;i<=nn;i++)
{
ll ttn;
scanf("%I64d",&ttn);
update(i,ttn);
}
for(int i=1;i<=m;i++)
{
char c[2];
ll a,b,x;
scanf("%s",c);
if(c[0]=='Q')
{
scanf("%I64d%I64d",&a,&b);
printf("%I64d\n",query(a,b,1,1,n));
}
else
{
scanf("%I64d%I64d%I64d",&a,&b,&x);
add(a,b,1,1,n,x);
}
}
}
return 0;
}