其实这是一道划分树的题目,用这种方法可以说是纯粹搞过去的。不过还是从这里面学到了好多。
首先当然是搞这道题目的方法,分桶法与平方分割,分统法把元素每n^1/2分成一桶,这样可以把区间操作降低到O(n^1/2),比如分筒法的RMQ。
然后是关于程序中区间的理解,程序中用到的区间最好是半开半闭区间,STL 和 JAVA的类库都是这样实现的,这样有很多优点,其中一个优点就是区间的长度是l-r,而判断两个区间的交或者并的时候思考的难度也降低很多。l<r代表区间有值,l=r代表区间到了最后。用闭区间就特别麻烦。
还有是有关2分的理解。
2分时候的区间当然也是半开半闭区间,闭区间的一方面是有正确答案的时候更新的,如果越大越有可能对,那么右闭,否则,左闭。更新时,符合条件更新闭的值,否则更新不闭的值。
#include<stdio.h>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
const int B = 1000 ;
const int MAX_N = 100000;
int nums[200000];
int L[10000];
int R[10000];
int K[10000];
int A[200000];
vector<int> bucket[MAX_N/B];
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%d",&nums[i]);
A[i]=nums[i];
}
sort(A+1,A+n+1);
for(int i=1;i<=m;i++)
scanf("%d%d%d",&L[i],&R[i],&K[i]);
int l,r;
for(int i=1;i<=n;i++)
bucket[i/B].push_back(nums[i]);
for(int i=0;i<n/B;i++)
sort(bucket[i].begin(),bucket[i].end());
for(int i=1;i<=m;i++)
{
int l=L[i],r=R[i],k=K[i];
int lb=0,ub=n;
while(ub-lb>1)
{
int c=0;
int tl=l,tr=r+1;
int mid=(ub+lb)/2;
int x=A[mid];
while(tl<tr&&tl%B!=0)
{
if(nums[tl++]<=x)
{
c++;
}
}
while(tl<tr&&tr%B!=0) if(nums[--tr]<=x) c++;
for(int i=tl/B;i*B+B<=tr;i++)
{
c+=upper_bound(bucket[i].begin(),bucket[i].end(),x)-bucket[i].begin();
}
if(c>=k)//c 满足条件,但是可以更大一点
ub=mid;
else
lb=mid;
}
printf("%d\n",A[ub]);
}
return 0;
}