poj2104 分桶法与平方分割 还有一些其他的感悟

   其实这是一道划分树的题目,用这种方法可以说是纯粹搞过去的。不过还是从这里面学到了好多。

   首先当然是搞这道题目的方法,分桶法与平方分割,分统法把元素每n^1/2分成一桶,这样可以把区间操作降低到O(n^1/2),比如分筒法的RMQ。

    然后是关于程序中区间的理解,程序中用到的区间最好是半开半闭区间,STL 和 JAVA的类库都是这样实现的,这样有很多优点,其中一个优点就是区间的长度是l-r,而判断两个区间的交或者并的时候思考的难度也降低很多。l<r代表区间有值,l=r代表区间到了最后。用闭区间就特别麻烦。

    还有是有关2分的理解。

    2分时候的区间当然也是半开半闭区间,闭区间的一方面是有正确答案的时候更新的,如果越大越有可能对,那么右闭,否则,左闭。更新时,符合条件更新闭的值,否则更新不闭的值。

#include<stdio.h>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
const int B = 1000 ;
const int MAX_N = 100000;
int nums[200000];
int L[10000];
int R[10000];
int K[10000];
int A[200000];

vector<int> bucket[MAX_N/B];

int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&nums[i]);
        A[i]=nums[i];
    }

    sort(A+1,A+n+1);
    for(int i=1;i<=m;i++)
        scanf("%d%d%d",&L[i],&R[i],&K[i]);

    int l,r;
    for(int i=1;i<=n;i++)
        bucket[i/B].push_back(nums[i]);
    for(int i=0;i<n/B;i++)
        sort(bucket[i].begin(),bucket[i].end());

    for(int i=1;i<=m;i++)
    {
        int l=L[i],r=R[i],k=K[i];
        int lb=0,ub=n;
        while(ub-lb>1)
        {
            int c=0;
            int tl=l,tr=r+1;
            int mid=(ub+lb)/2;
            int x=A[mid];
            while(tl<tr&&tl%B!=0)
            {
                if(nums[tl++]<=x)
                {
                    c++;
                }
            }
            while(tl<tr&&tr%B!=0) if(nums[--tr]<=x) c++;
            for(int i=tl/B;i*B+B<=tr;i++)
            {
                c+=upper_bound(bucket[i].begin(),bucket[i].end(),x)-bucket[i].begin();
            }
            if(c>=k)//c 满足条件,但是可以更大一点
                ub=mid;
            else
                lb=mid;
        }
        printf("%d\n",A[ub]);
    }
    return 0;
}


    

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值