二维坐标间的线性变换

开始做模拟时钟的bean了,看dW上Java 2D的那个例子很有意思,比JDK自带的applet要简单,因为用到了仿射变换(Affine Transformation),只用简单得多的运算就可以绘制较高质量的动画。乘SUN的JavaDoc中文化之东风,先把java.awt.geom.AffineTransform的API doc之一部分简单翻译一下,只涉及到一点几何和线性代数的小常识:
=============================================

AffineTransform类描述了一种二维仿射变换的功能,它是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注:straightness,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,相交直线的交角不变。大二学过的复变,“保形变换/保角变换”都还记得吧,数学就是王道啊!)。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。
 
此类变换可以用一个3×3的矩阵来表示,其最后一行为(0, 0, 1)。该变换矩阵将原坐标(x, y)变换为新坐标(x', y'),这里原坐标和新坐标皆视为最末一行为(1)的三维列向量,原列向量左乘变换矩阵得到新的列向量:
 
[x']    [m00 m01 m02] [x]     [m00*x+m01*y+m02]
[y'] = [m10 m11 m12] [y] = [m10*x+m11*y+m12]
[1 ]    [ 0      0      1   ] [1]    [               1              ]

 
几种典型的仿射变换:

public static AffineTransform getTranslateInstance(double tx, double ty)

平移变换,将每一点移动到(x+tx, y+ty),变换矩阵为:
[   1    0    tx  ]
[   0    1    ty  ]
[   0    0    1   ]
 

public static AffineTransform getScaleInstance(double sx, double sy)

缩放变换,将每一点的横坐标放大(缩小)至sx倍,纵坐标放大(缩小)至sy倍,变换矩阵为:
[   sx   0    0   ]
[   0    sy   0   ]
[   0    0    1   ]

public static AffineTransform getShearInstance(double shx, double shy)

剪切变换,变换矩阵为:
[   1   shx   0   ]
[  shy   1    0   ]
[   0     0    1   ]
相当于一个横向剪切与一个纵向剪切的复合
[   1      0    0   ][   1   shx   0   ]
[  shy    1    0   ][   0    1     0   ]
[   0      0    1   ][   0    0     1   ]
 

public static AffineTransform getRotateInstance(double theta)

旋转变换,目标图形围绕原点顺时针旋转theta弧度,变换矩阵为:
[   cos(theta)    -sin(theta)    0   ]
[   sin(theta)     cos(theta)    0   ]
[       0                0               1   ]

public static AffineTransform getRotateInstance(double theta, double x, double y)

旋转变换,目标图形以(x, y)为轴心顺时针旋转theta弧度,变换矩阵为:
[   cos(theta)    -sin(theta)    x-x*cos+y*sin]
[   sin(theta)     cos(theta)    y-x*sin-y*cos ]
[       0                 0                    1             ]
相当于两次平移变换与一次原点旋转变换的复合:
[1  0  -x][cos(theta)  -sin(theta)  0][1  0  x]
[0  1  -y][sin(theta)   cos(theta)  0][0  1  y]
[0  0   1][     0                0          1][0  0  1]
以下是一个使用Matplotlib库绘制二维直角坐标系的线性变换动画的Python代码示例: ```python import numpy as np import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # 定义二维向量 v = np.array([1, 0]) # 定义线性变换矩阵 A = np.array([[1, 1], [2, 1]]) # 定义图像显示范围 x_min = -3 x_max = 3 y_min = -3 y_max = 3 # 创建坐标系 fig, ax = plt.subplots() # 绘制坐标系 ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_aspect('equal', adjustable='box') ax.axhline(y=0, color='k') ax.axvline(x=0, color='k') # 绘制原始向量 original, = ax.plot([0, v[0]], [0, v[1]], 'b', label='Original') # 定义更新函数 def update(num): # 计算变换后的向量 transformed = A @ v # 绘制变换后的向量 transformed_line.set_data([0, transformed[0]], [0, transformed[1]]) # 更新原始向量 original.set_label('Original: ' + str(v)) original.set_color('b') # 更新变换后的向量 transformed_line.set_label('Transformed: ' + str(transformed)) transformed_line.set_color('r') # 更新标题 ax.set_title('Linear Transformation: A = ' + str(A)) # 更新图例 ax.legend() # 更新向量 v[:] = transformed[:] # 创建变换后的向量线条 transformed_line, = ax.plot([], [], 'r', label='Transformed') # 创建动画 ani = FuncAnimation(fig, update, frames=10, interval=1000, repeat=True) # 显示动画 plt.show() ``` 代码说明: 1. 定义二维向量 `v` 和线性变换矩阵 `A` 2. 创建坐标系和原始向量 `original` 3. 定义更新函数 `update`,用于更新变换后的向量 4. 在更新函数中计算变换后的向量 `transformed`,并更新原始向量和变换后的向量 5. 创建变换后的向量线条 `transformed_line` 6. 创建动画 `ani`,并通过调用 `plt.show()` 显示动画 此代码示例可以根据需要进行修改和扩展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值