79、说服性技术设计特征分析

说服性技术设计特征分析

1. 引言

对如何设计激励行为改变的技术的研究,一直吸引着研究人员和行业从业者的关注。说服性技术(PT)被定义为“任何旨在改变人们态度或行为的交互式计算系统”。然而,开发者对说服性设计特征的应用较为零散,Oinas - Kukkonen和Harjumaa开发的PSD模型为PT的开发提供了系统的方法,但其实际适用性尚未得到充分验证。本研究旨在填补这一研究空白,实证检验PSD模型的适用性,并评估其推荐的设计特征对加纳学生行为改变的有效性。

2. 文献综述
  • 说服性技术的定义与标准 :Fogg提出,一项技术要被视为说服性技术,需满足三个标准:一是说服应源于人机交互(HCI),而非计算机介导的通信;二是潜在的说服效果必须是有意和有计划的,而非使用技术的副产品;三是说服意图必须是内生的,即产品本身自带说服或激励诉求,而非来自外部来源。
  • 说服性技术的角色分类 :PT可分为媒体、工具和角色三种类型。作为交互式媒体,PT能让人们体验专门设计以塑造其观点的信息;作为工具,PT可简化或促进某些活动,如跟踪和优化饮食习惯;作为角色,PT可承担类人角色。
  • 说服性技术的应用领域
    • 健康与福祉 :相关研究聚焦于技术如何改善用户饮食和健康行为。例如,Intille等人开发了一种饮食改善工具,在购买点提供饮食改善信息,鼓励用户做出更明智的食物选择;Eyck等人的研究表明,虚拟教练能从内在和外在激励人们骑行更远;还有基于个人干预教练的对话代理原型,被证明能有效降低荷兰吸烟者的吸烟率。
    • 在线营销 :这是PT最突出的应用领域之一。PT通过自动化各种在消费领域行之有效的策略,激励客户购买产品和服务,其中最流行的策略是跟踪和监控,即根据消费者的在线活动和偏好推荐产品和服务。随着电子商务的发展,预计营销将继续吸引PT研究人员。
3. 研究框架与假设
3.1 说服性系统开发模型

Oinas - Kukkonen和Harjumaa认为,说服性系统的开发包括三个阶段:
- 理解基本问题 :需考虑七个主要问题,包括信息技术的中立性、人们的承诺和认知一致性、直接和间接说服策略、说服的渐进性、设计者的透明度、说服系统的不唐突原则以及系统的有用性和易用性。
- 分析说服情境 :识别使用说服系统的意图、事件和策略。
- 评估设计特征 :在开发PT时,需评估并使用四个主要设计特征来刺激行为改变,具体如下:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(理解说服系统基本问题):::process --> B(分析说服情境):::process
    B --> C(评估设计特征):::process
    C --> D(主要任务支持):::process
    C --> E(对话支持):::process
    C --> F(系统可信度支持):::process
    C --> G(社会支持):::process
    D --> H(行为和/或态度改变):::process
    E --> H
    F --> H
    G --> H
3.2 概念模型

基于PSD模型的设计特征,提出四个假设:
- H1 :具有主要任务支持能力的说服性技术更有可能影响行为改变。主要任务支持通过减少、隧道化、定制和个性化等设计原则,降低用户的认知负担,使交互和使用更简单。例如,减少是指系统将复杂过程分解为简单活动,以最小化用户完成主要任务的努力;个性化帮助用户识别和设定目标,并通过自我监控跟踪进度。
- H2 :具有对话支持特征的说服性技术更有可能影响行为改变。对话支持通过赞扬、奖励、提醒和建议等功能,激励和支持用户与系统持续交互。已有研究表明,这些功能可增强系统的说服能力,但对用户行为的实际影响尚待研究。
- H3 :具有可信度支持的说服性技术更有可能影响行为改变。系统可信度支持通过纳入专业知识、第三方背书和权威等特征,增强系统的可信度和可靠性。用户在使用提供推荐的系统时,非常关注信息来源的可信度。
- H4 :具有社会支持的说服性技术更有可能影响行为改变。社会支持通过社会学习、社会比较、合作、认可和竞争等原则,利用社会影响来促进用户的动机。例如,用户可以通过系统观察他人的行为,比较自己与他人的表现,获得公开认可,或参与竞争,从而更有动力采取目标行为。

概念模型的构成如下表所示:
| 支持类型 | 具体组成部分 |
| — | — |
| 主要任务支持 | 减少、隧道化、定制、个性化 |
| 对话支持 | 赞扬、奖励、提醒、建议 |
| 系统可信度支持 | 专业知识、第三方背书、权威 |
| 社会支持 | 社会学习、社会比较、合作、认可、竞争 |

3.3 研究方法

本研究采用定量方法,通过问卷调查收集数据。具体步骤如下:
1. 目标人群 :选取加纳阿克拉两所私立初中的学生作为研究对象,原因是初中学生在数学学习上存在焦虑,导致数学成绩不佳,而交互式学习方法被推荐用于改善这种情况。
2. 样本选择 :使用简单随机抽样技术,选取150名学生作为样本。虽然样本量较小,但在验证性研究中是可行的,且现代计算能力使得使用较小样本进行假设检验成为可能。
3. 问卷设计 :采用五点李克特量表,从强烈不同意(1)到强烈同意(5)。为确保数据的可靠性和有效性,对问卷进行了预测试,修改了不一致、不清晰和误导性的问题。预测试使用了25份问卷。
4. 数据收集与分析 :在收集数据前,获得了受访者的同意,并确保其匿名性。数据收集后,进行了描述性统计、因子分析和多元回归分析。在分析前,检查了数据的缺失值、异常值和正态性。

说服性技术设计特征分析

4. 结果分析与讨论

本部分对收集的数据进行分析,探讨受访者的人口统计学特征,然后进行因子分析以提取潜在变量,最后进行回归分析以研究变量之间的关系。

4.1 因子分析

因子分析旨在提取所收集变量中的潜在结构。由于测量同一结构的响应之间存在相关性,因此可以通过因子分析来实现这一目标。采用方差最大因子旋转方法对提取的成分进行旋转,将早期提取因子的方差重新分配到后期因子,以获得更有意义的因子模式。

因子分析通过方差最大旋转方法提取了五个因子,这些因子约占响应总变异的68.223%。根据在每个因子上载荷较大的项目类型,将它们归类为设计特征,即主要任务支持、对话支持、系统可信度支持和社会支持,最后一个因子代表用户的行为改变。对交叉载荷和在任何因子上载荷不显著的项目进行了忽略处理。

4.2 回归分析

回归分析的方差分析(ANOVA)表如下所示:
| 来源 | 平方和 | df | 均方 | F | Sig. |
| — | — | — | — | — | — |
| 回归 | 132.645 | 3 | 44.215 | 53.335 | 0.000 |
| 残差 | 121.072 | 146 | 0.829 | | |
| 总计 | 253.717 | 149 | | | |

从表中可以看出,回归模型具有显著性(F值 = 53.335,p值 < 0.001),这表明自变量与因变量之间存在显著关系。模型的R平方值为52.28%,意味着自变量(即所研究的因素)解释了因变量(即用户行为改变)约52%的变异。

回归系数估计结果如下表所示:
| 变量 | 系数 | 标准误差 | t | 概率 | 95%置信区间 |
| — | — | — | — | — | — |
| 常数项 | -0.058653 | 0.01687 | 3.48 | 0.001 | 0.025476 - 0.091831 |
| 主要任务支持 | 1.259842 | 0.21249 | 5.93 | 0.022 | 1.108067 - 1.567775 |
| 对话支持 | 0.812991 | 0.15133 | 5.37 | 0.043 | 0.570334 - 1.133001 |
| 系统可信度支持 | 1.587881 | 0.35283 | 4.50 | 0.017 | 1.260133 - 1.812280 |
| 社会支持 | 2.137963 | 0.19357 | 11.04 | 0.006 | 1.189142 - 4.002450 |

结果显示,所有影响受访者行为改变的决定因素均具有统计学显著性(p值 < 0.05)。所有变量对用户行为改变都有积极影响,其中社会支持的系数最高(2.137963),是影响受访者采用说服性技术的最主要因素。其次是系统可信度支持,系数为1.587881,然后是主要任务支持(1.259842)和对话支持(0.812991)。因此,虽然所有结构对用户行为改变都有显著影响,但主要任务支持和对话支持的影响相对较小。

5. 综合讨论

上一部分通过多元分析确定了影响加纳说服性技术(PT)行为改变的设计特征。本部分将研究结果与类似研究进行比较和讨论。

  • 主要任务支持 :第一个假设表明,具有主要任务支持的说服性技术更有可能被采用,这一假设得到了验证。该结果支持了Fogg的行为改变三因素模型,即一个人要改变行为,必须有足够的动机、具备执行行为的能力并受到触发。在PT中纳入主要任务支持作为设计特征,可提高用户执行目标行为的能力,并可能成为触发行为的因素。通过定制、模拟和排练等原则,系统支持用户主要任务或目标的能力将鼓励用户持续使用,从而最终导致行为改变。
  • 对话支持 :对话支持特征也能激励用户影响行为改变,尽管其影响程度低于其他特征。这与相关研究结果一致,即采用赞扬、奖励、提醒和建议等功能具有强大的说服能力。随着说服能力的提高,系统能够激励用户持续使用PT,最终导致行为改变。
  • 系统可信度支持 :系统可信度支持对行为改变的重要性不可忽视。系数第二高的结果表明,尽管PT有诸多好处,但用户更愿意使用他们认为可信的系统,即能够提供准确信息,且开发者在该领域具有相当专业知识和权威的系统。这一结果支持了行为研究中的发现,即高可信度来源在非合规情况下能带来更大的积极态度改变。
  • 社会支持 :分析结果显示,Oinas - Kukkonen和Harjumaa在PSD模型中提出的社会支持特征对态度改变的影响大于其他特征。这一结果支持了相关研究,强调了在PT中纳入社会支持特征以触发行为表现和激励用户的必要性。社会支持特征可提高用户对系统的信任,并激励他们改变行为。

综上所述,本研究验证了PSD模型作为构建PT的可靠指南的有效性。

6. 结论与启示

本研究对影响加纳学生行为改变的说服性技术设计特征进行了调查。通过回顾说服性技术文献,并使用PSD模型确定了影响行为改变的设计特征。研究发现,主要任务支持、对话支持、可信度支持和社会支持这四个结构均对行为改变有显著影响,其中社会支持对行为改变的影响最大,而对话支持的影响最小。

本研究对研究、实践和政策都具有重要意义。在研究和理论方面,本研究从发展中国家的视角为PSD模型提供了实证证据,做出了重要贡献。在实践和政策方面,本研究为在各个领域应用说服性技术提供了见解,有助于推动相关实践和政策的发展。

以下是本次研究的流程总结:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width:2px;
    A(文献综述):::process --> B(构建研究框架与假设):::process
    B --> C(确定研究方法):::process
    C --> D(数据收集):::process
    D --> E(因子分析):::process
    E --> F(回归分析):::process
    F --> G(结果讨论):::process
    G --> H(得出结论与启示):::process

通过本次研究,我们可以更清晰地了解说服性技术设计特征对行为改变的影响,为未来相关技术的开发和应用提供了有价值的参考。

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值