39、毛驴体重预测模型:从数据探索到模型评估

毛驴体重预测模型:从数据探索到模型评估

在数据分析与建模的过程中,我们常常需要对各种数据集进行深入挖掘,以找到能够准确描述和预测现象的模型。本次我们聚焦于毛驴体重的预测问题,通过一系列的数据处理、探索性分析、模型构建和评估,最终得到了一个简单且有效的预测模型。

数据预处理与分割

在开始分析之前,我们对数据进行了清洗和质量检查,移除了数据框中的三个异常观测值。随后,为了确保模型的泛化能力,我们将数据按 80/20 的比例划分为训练集和测试集。具体操作如下:

import numpy as np

# 随机打乱数据索引
np.random.seed(42)
n = len(donkeys)
indices = np.arange(n)
np.random.shuffle(indices)
n_train = int(np.round((0.8 * n)))

# 划分训练集和测试集
train_set = donkeys.iloc[indices[:n_train]]
test_set = donkeys.iloc[indices[n_train:]]

这个过程可以用以下 mermaid 流程图表示:

graph LR
    A[原始数据] --> B[数据清洗]
    B --> C[随机打乱索引]
    C --> D[划分训练集和测试集]
    D --> E[训练集]
    D --> F[测试集]
探索性数据分析
【源码免费下载链接】:https://renmaiwang.cn/s/y2yxe SpringCloud Feign是Spring Cloud组件库中一个功能强大的工具,采用了一种基于注解的声明式风格来实现Web服务客户端的开发。它通过提供一种简便的方式,在Spring Boot应用中实现了对HTTP请求的封装处理,从而简化了Web服务客户端的开发流程。该组件能够自动识别接口并建立与HTTP请求之间的映射关系,并将接口方法的注解信息转换为对应的HTTP数据传输方式。 在使用Feign进行跨服务调用时,开发者需要在目标服务提供者(Service Provider)的Controller类中定义相关接口和方法,并利用@RequestBody等注解来接收复杂的JSON类型参数。这种机制使得客户端能够轻松处理不同类型的网络请求数据。同时,在需要向客户端返回响应信息的服务消费者(Service Consumer)设计中,可以保留原有的Controller结构,并创建专门用于服务消费的新Controller,从而实现了服务间调用关系的清晰化。 为了实现高效的跨服务通信,Feign提供了灵活多样的配置选项和注解工具。例如,通过@FeignClient注解可以在目标服务对象上附加必要的配置信息,如服务名称、访问路径等,并结合@RequestMapping注解来指定不同的HTTP请求方法(GET/POST等)。此外,该组件还支持多种自定义调用参数设置,允许开发者根据具体需求调整网络请求的超时时间、日志输出级别等多种属性。 在实际开发中,Feign与Spring MVC配合使用可以显著提升跨服务应用的开发效率。例如,在一个简单的映射式调用场景下,开发者可以通过@GetMapping注解指定特定的服务路径,并结合@FeignClient注解来实现对目标服务对象的高效通信。以下是两个具体的示例:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值