毛驴体重预测模型:从数据探索到模型评估
在数据分析与建模的过程中,我们常常需要对各种数据集进行深入挖掘,以找到能够准确描述和预测现象的模型。本次我们聚焦于毛驴体重的预测问题,通过一系列的数据处理、探索性分析、模型构建和评估,最终得到了一个简单且有效的预测模型。
数据预处理与分割
在开始分析之前,我们对数据进行了清洗和质量检查,移除了数据框中的三个异常观测值。随后,为了确保模型的泛化能力,我们将数据按 80/20 的比例划分为训练集和测试集。具体操作如下:
import numpy as np
# 随机打乱数据索引
np.random.seed(42)
n = len(donkeys)
indices = np.arange(n)
np.random.shuffle(indices)
n_train = int(np.round((0.8 * n)))
# 划分训练集和测试集
train_set = donkeys.iloc[indices[:n_train]]
test_set = donkeys.iloc[indices[n_train:]]
这个过程可以用以下 mermaid 流程图表示:
graph LR
A[原始数据] --> B[数据清洗]
B --> C[随机打乱索引]
C --> D[划分训练集和测试集]
D --> E[训练集]
D --> F[测试集]