对抗生成网络学习
各类对抗生成网络的实现
全部梭哈迟早暴富
这个作者很懒,什么都没留下…
展开
-
对抗生成网络学习(十六)——stackGAN++利用文字生成鸟类图片(tensorflow实现)(未完待续)
一、背景最近工作逐渐步入正轨,自己要做一个文字和图像的交互,所以就考虑先做做类似的工作,恰好之前有看到过stackGAN,因此这次就做做stcakGAN++。stackGAN其实发布的比较早,stackGAN++是它的改进版,后续还有一个attnGAN是对stackGAN++的后续工作的解决。stackGAN++是Han Zhang等人[1]于2017年10月提出的一个模型,发表在ICCV...原创 2019-07-16 14:00:33 · 3472 阅读 · 4 评论 -
对抗生成网络学习(十五)——starGAN实现人脸属性修改(tensorflow实现)
一、背景最近事情比较多,一个多月没写CSDN了,最近打算做一做satrGAN。starGAN是Yunjey Choi等人于17年11月提出的一个模型[1]。该模型可以实现人脸的属性修改,原理上来说就是域迁移,之前cycleGAN本质上也是域迁移,不过cycyleGAN是单个域,而starGAN则是多个域。本实验所采用的数据集为CelebA(原论文中作者还使用了数据集RaFD),之前也介...原创 2019-05-31 22:00:04 · 7039 阅读 · 25 评论 -
对抗生成网络学习(十四)——DRAGAN对模型倒塌问题的处理和生成图像质量评价(tensorflow实现)
一、背景之前在做GAN主要是关注GAN的应用,找了一些比较好的例子实现了下,后面还会持续做这方面的工作。今天来看看DRAGAN对于GAN中一些问题的处理方法,也为今后这方面的研究做一部分基础工作吧,我们不仅应该了解GAN能做什么,还应该了解GAN的问题及解决方法。DRAGAN是Naveen Kodali等人于2017年5月发表的一篇文章《ON CONVERGENCE AND STABILI...原创 2019-04-12 15:38:03 · 7036 阅读 · 11 评论 -
对抗生成网络学习(十三)——conditionalGAN生成自己想要的手写数字(tensorflow实现)
一、背景其实我原本是不打算做这个模型,因为conditionalGAN能做的,infoGAN也能做,infoGAN我在之前的文章中写到了:对抗神经网络学习(五)——infoGAN生成宽窄不一,高低各异的服装影像(tensorflow实现)。由于最近入职新公司,还在试用期,由于公司缺乏样本,领导就让我做一些手写数字的生成样本出来,方便做后面的工作。自己想了想,之前用过infoGAN,这次就试试不...原创 2019-03-29 16:47:43 · 3629 阅读 · 4 评论 -
对抗生成网络学习(十二)——MARTA-GAN实现遥感图像的场景生成(tensorflow实现)
一、背景MARTA-GAN全称为multiple-layer feature-matching generative adversarial networks,是Daoyu Lin等人于16年12月发表的文章。我比较好奇的是,这个GAN为啥要叫MARTA-GAN,而不是MLFM-GAN...........由于我自身是做遥感出身的,所以还挺关注GAN在遥感方面的应用,这篇文章算是我看到的GAN...原创 2019-02-22 11:12:14 · 9398 阅读 · 41 评论 -
对抗生成网络学习(十一)——SAGAN生成更为精细的人脸图像(tensorflow实现)
一、背景SAGAN全称为Self-Attention Generative Adversarial Networks,是由Han Zhang等人[1]于18年5月提出的一种模型。文章中作者解释到,传统的GAN模型都是在低分辨率特征图的空间局部点上来生成高分辨率的细节,而SAGAN是可以从所有的特征处生成细节,并且SAGAN的判别器可以判别两幅具有明显差异的图像是否具有一致的高度精细特征。SAG...原创 2019-01-25 18:05:55 · 8482 阅读 · 16 评论 -
对抗生成网络学习(十)——attentiveGAN实现影像去雨滴的过程(tensorflow实现)
一、背景attentiveGAN是Rui Qian等人于17年11月份提出的一种模型。《Attentive Generative Adversarial Network for Raindrop Removal from A Single Image》在generator网络中引入了attention map,提高了影像中雨滴的去除效果。本实验主要参考代码[2],进行了简单改进,用较短的...原创 2018-12-01 12:21:55 · 11730 阅读 · 116 评论 -
对抗生成网络学习(九)——CartoonGAN+爬虫生成《言叶之庭》风格的影像(tensorflow实现)
一、背景cartoonGAN是Yang Chen等人于2018年2月提出的一种模型。该模型针对漫画风格图像生成做了进一步研究,提出了新的GAN网络结构和两种损失函数,相较于之前的漫画风格生成的GAN模型,cartoonGAN的生成漫画风格的图像质量有了明显提高。本实验通过自己爬取《言叶之庭》(新海城的动漫)的影像进行实验,以生成相应风格的动漫影像。[1]文章链接:http://open...原创 2018-11-22 11:54:24 · 9132 阅读 · 47 评论 -
对抗生成网络学习(八)——DeblurGAN实现运动图像的去模糊化(tensorflow实现)
一、背景DeblurGAN是Orest Kupyn等人于17年11月提出的一种模型。前面学习过,GAN可以保存影像的细节纹理特征,比如之前做过的SRGAN可以实现图像的超分辨率,因此,作者利用这个特点,结合GAN和多元内容损失来构建DeblurGAN,以实现对运动图像的去模糊化。本试验的数据集为GOPRO数据,后面还会有详细的介绍,尽可能用比较少的代码实现DeblurGAN。[1]文章...原创 2018-11-16 14:32:42 · 39648 阅读 · 333 评论 -
对抗生成网络学习(七)——SRGAN生成超分辨率影像(tensorflow实现)
一、背景SRGAN(Super-Resolution Generative Adversarial Network)即超分辨率GAN,是Christian Ledig等人于16年9月提出的一种对抗神经网络。利用卷积神经网络实现单影像的超分辨率,其瓶颈仍在于如何恢复图像的细微纹理信息。对于GAN而言,将一组随机噪声输入到生成器中,生成的图像质量往往较差。因此,作者提出了SRGAN,并定义一个lo...原创 2018-11-13 16:54:35 · 16018 阅读 · 160 评论 -
对抗生成网络学习(六)——BEGAN实现不同人脸的生成(tensorflow实现)
一、背景BEGAN,即边界平衡GAN(Boundary Equilibrium GAN),是DavidBerthelot等人[1]于2017年03月提出的一种方法。传统的GAN是利用判别器去评估生成器生成的图片和真实图片的数据分布是否一致,而BEGAN则代替了这种概率估计的方法,作者认为只要分布之间的误差分布相近的话,那就可以认为这些分布相近。同时作者又对网络结构进行了改进,并取得了比较好的实...原创 2018-11-06 17:45:47 · 8336 阅读 · 70 评论 -
对抗生成网络学习(五)——infoGAN生成宽窄不一,高低各异的服装影像(tensorflow实现)
一、背景前一阶段比较忙,很久没有继续做GAN的实验了。近期终于抽空做完了infoGAN,个人认为infoGAN是对GAN的更进一步改进,由于GAN是输入的随机生成噪声,所以生成的图像也是随机的,而infoGAN想要生成的是指定特征的图像,因此infoGAN对GAN的随机输入加了约束,这是其最大的改进之处。infoGAN是16年6月份由Xi Chen等人提出的一种模型。本实验主要利用infoGA...原创 2018-10-20 11:33:38 · 3707 阅读 · 20 评论 -
对抗生成网络学习(四)——WGAN+爬虫生成皮卡丘图像(tensorflow实现)
一、背景WGAN的全称为Wasserstein GAN, 是Martin Arjovsky等人于17年1月份提出的一个模型,该文章可以参考[1]。WGAN针对GAN存在的问题进行了有针对性的改进,但WGAN几乎没有改变GAN的结构,只是改变了激活函数和loss函数,以及截取权重,却得到了非常好的效果[2]。且WGAN的方法同样适用于DCGAN。本文以python爬虫爬取的皮卡丘(pikac...原创 2018-09-17 15:17:44 · 8760 阅读 · 26 评论 -
对抗生成网络学习(三)——cycleGAN实现Van Gogh风格的图像转换(tensorflow实现)
一、背景CycleGAN是Jun-Yan Zhu等人[1]于17年3月份提出的对抗神经网络模型,模型理论与pix2pix非常相似。CycleGAN的主要应用是具有不同风格图像之间的相互转换,相较于pix2pix模型,其最大的贡献在于能够利用非成对数据(unpaired data)进行训练,可扩展性及应用更广。该实验的目的是利用CycleGAN对一批Van Gogh油画图像和现实风景图像进行训练...原创 2018-09-07 15:36:00 · 10960 阅读 · 41 评论 -
对抗生成网络学习(二)——DCGAN生成Cage人脸图像(tensorflow实现)
一、背景DCGAN的全程为Deep Convolutional Generative Adversarial Network,即深度卷积对抗网络。该实验的主要目的是利用DCGAN来生成人脸图像。DCGAN是Alec Radfor等人[1]于2015年提出的一种模型,该模型基于GAN,并加入了卷积网络,以实现对图像的处理。本实验以一批人脸图像为例,尽可能的用比较少的代码实现DCGAN。[...原创 2018-09-01 11:09:39 · 15488 阅读 · 65 评论 -
对抗生成网络学习(一)——GAN实现mnist手写数字生成(tensorflow实现)
一、背景对抗神经网络GAN最早是2014年Ian goodfellow等人[1]提出的一个新的神经网络模型。在这个模型中,通过生成器G和判别器D相互博弈,以提高模型自身的泛化性能,使得生成器G最终能够产生与真实样本接近的数据。本实验以mnist数据集为例,尽可能的以最少的代码实现GAN。[1]文章链接:https://arxiv.org/pdf/1406.2661.pdf二、GAN...原创 2018-08-25 10:17:27 · 16011 阅读 · 80 评论