一、背景
DCGAN的全程为Deep Convolutional Generative Adversarial Network,即深度卷积对抗网络。该实验的主要目的是利用DCGAN来生成人脸图像。DCGAN是Alec Radfor等人[1]于2015年提出的一种模型,该模型基于GAN,并加入了卷积网络,以实现对图像的处理。
本实验以一批人脸图像为例,尽可能的用比较少的代码实现DCGAN。
[1]文章链接:https://arxiv.org/pdf/1511.06434.pdf
二、DCGAN原理
DCGAN的原理CSDN上已经有非常完善的介绍,这里只做简单介绍。
DCGAN可以看成是CNN+GAN,将卷积神经网络引入到GAN当中。DCGAN的贡献在论文中也有提及,主要包含以下四点:
• We propose and evaluate a set of constraints on the architectural topology of Convolutional GANs that make them stable to train in most settings. We name this class of architectures Deep Convolutional GANs (DCGAN)(在卷积GAN的网络拓扑结构中设置一系列限制,使得其能够稳定的训练。)
• We use the trained discriminators for image classification tasks, showing competitive performance with other unsupervised algorithms.(将DCGAN的判别器用于图像分类任务,能够产生与非监督算法相媲美的效果)
• We visualize the filters learnt by GANs and empirically show that specific filters have learned to draw specific objects.(对GAN学习到的filter进行了可视化)
• We show that the generators have interesting vector arithmetic properties allowing for easy manipulation of many semantic qualities of generated samples.(利用DCGAN生成器的生成矢量易于生成样本)
DCGAN的generator的网络结构如下所示:
在generator中,传统CNN中的pooling层用batch normalization层代替,这样做的好处在于能够减少由于层数加深带来的梯度消散的影响。
网上也有一些比较好理解的代码,下面给出链接供大家参考:
[2]https://github.com/HyeongminLEE/Tensorflow_DCGAN
[3]https://github.com/jazzsaxmafia/dcgan_tensorflow/tree/master/lsun
[4]https://github.com/MINGUKKANG/DCGAN-tensorflow
我主要参考了[4]的代码,并在原有代码基础上进行改进,用尽量简单易读的方式实现DCGAN。
三、DCGAN实现——以人脸数据集为例
1.定义超参数 hyper parameter
首先导入模型需要的库,并定义相关参数
# 导入需要的包
from PIL import Image # Image 用于读取影像
from skimage import io # io也可用于读取影响,效果比Image读取的更好一些
import tensorflow as tf # 用于构建神经网络模型
import matplotlib.pyplot as plt # 用于绘制生成影像的结果
import numpy as np # 读取影像
import os # 文件夹操作
import time # 计时
# 设置相关参数
is_training = True
input_dir = "./face/" # 原始数据的文件夹路径
# 设置超参数 hyper parameters
batch_size = 64
image_width = 64
image_height = 64
image_channel = 3
data_shape = [64, 64, 3]
data_length = 64 * 64 * 3
z_dim = 100
learning_rate = 0.00005
beta1 = 0.5
epoch = 500
2.数据准备
原始数据主要为人脸数据,数据可以从网上自行下载,或者利用自己的数据,这里对数据的没有严格要求。
我是采用了网络上的数据集,这里给出数据的下载地址:https://anonfile.com/p7w3m0d5be/face-swap.zip
下载好数据并解压,按照如下方式设置文件夹:
-- *.py
-- face (文件夹)
|--------A (A的人脸数据集)
|--------image1.jpg
|--------image2.jpg
|--------image3.jpg
|--------.....
|--------B (B的人脸数据集)
|--------image1.jpg
|--------image2.jpg
|--------image3.jpg
|--------.....
数据的所有文件的格式均为*.jpg,图像的尺寸大小均为256 * 256 * 3,真彩色影像,且每张图片均含有不同状态的人脸信息。设置好的文件夹及数据的结果如下:
直接的原始数据无法进行处理,我们需要将其读到程序中,读取图像的代码为:
# 读取数据的函数
def prepare_data(input_dir, floder):
'''
函数功能:通过输入图像的路径,读取训练数据
:参数 input_dir: 图像数据所在的根目录,即"./face"
:参数 floder: 图像数据所在的子目录, 即"./face/A"
:return: 返回读取好的训练数据
'''
# 遍历图像路径,并获取图像数量
images = os.listdir(input_dir + floder)
image_len = len(images)
# 设置一个空data,用于存放数据
data = np.empty((image_len, image_width, image_height, image_channel), dtype="float32")
# 逐个图像读取
for i in range(image_len):
#如果导入的是skimage.io,则读取影像应该写为img = io.imread(input_dir + images[i])
img = Image.open(input_dir + floder + "/" + images[i]) #打开图像
img = img.resize((image_width, image_height)) #将256*256变成64*64
arr = np.asarray(img, dtype="float32") #将格式改为np.array
data[i, :, :, :] = arr #将其放入data中
sess = tf.Session()
sess.run(tf.initialize_all_variables())
data = tf.reshape(data, [-1, image_width, image_height, image_channel])
train_data = data * 1.0 / 127.5 - 1.0 #对data进行正则化
train_data = tf.reshape(train_data, [-1, data_length]) #将其拉伸成一维向量
train_set = sess.run(train_data)
sess.close()
return train_set
3.编写网络结构
网络结构的思路和编写GAN的思路一样,网络结构的核心是生成器generator和判别器discriminator,同时再加上存储函数即可。
定义生成器generator函数:
# 定义生成器
def Generator(z, is_training, reuse):
'''
函数功能:输入噪声z,生成图像gen_img
:param z:即输入数据,一般为噪声
:param is_training:是否为训练环节
:return: 返回生成影像gen_img
'''
# 图像的channel维度变化为1->1024->512->256->128->3
depths = [1024, 512, 256, 128] + [data_shape[2]]
with tf.variable_scope("Generator", reuse=reuse):
# 第一层全连接层
with tf.variable_scope("g_fc1", reuse=reuse):
output = tf.layers.dense(z, depths[0]*4*4, trainable=is_training)
output = tf.reshape(output, [batch_size, 4, 4, depths[0]])
output = tf.nn.relu(tf.layers.batch_normalization(output, training=is_training))
# 第二层反卷积层1024
with tf.variable_scope("g_dc1", reuse=reuse):
output = tf.layers.conv2d_transpose(output, depths[1], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.relu(tf.layers.batch_normalization(output, training=is_training))
# 第三层反卷积层512
with tf.variable_scope("g_dc2", reuse=reuse):
output = tf.layers.conv2d_transpose(output, depths[2], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.relu(tf.layers.batch_normalization(output, training=is_training))
# 第四层反卷积层256
with tf.variable_scope("g_dc3", reuse=reuse):
output = tf.layers.conv2d_transpose(output, depths[3], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.relu(tf.layers.batch_normalization(output, training=is_training))
# 第五层反卷积层128
with tf.variable_scope("g_dc4", reuse=reuse):
output = tf.layers.conv2d_transpose(output, depths[4], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
gen_img = tf.nn.tanh(output)
return gen_img
编写判别器discriminator函数:
# 定义判别器
def Discriminator(x, is_training, reuse):
'''
函数功能:判别输入的图像是真或假
:param x: 输入数据
:param is_training: 是否为训练环节
:return: 判别结果
'''
# channel维度变化为:3->64->128->256->512
depths = [data_shape[2]] + [64, 128, 256, 512]
with tf.variable_scope("Discriminator", reuse=reuse):
# 第一层卷积层,注意用的是leaky_relu函数
with tf.variable_scope("d_cv1", reuse=reuse):
output = tf.layers.conv2d(x, depths[1], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.leaky_relu(tf.layers.batch_normalization(output, training=is_training))
# 第二层卷积层,注意用的是leaky_relu函数
with tf.variable_scope("d_cv2", reuse=reuse):
output = tf.layers.conv2d(output, depths[2], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.leaky_relu(tf.layers.batch_normalization(output, training=is_training))
# 第三层卷积层,注意用的是leaky_relu函数
with tf.variable_scope("d_cv3", reuse=reuse):
output = tf.layers.conv2d(output, depths[3], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.leaky_relu(tf.layers.batch_normalization(output, training=is_training))
# 第四层卷积层,注意用的是leaky_relu函数
with tf.variable_scope("d_cv4", reuse=reuse):
output = tf.layers.conv2d(output, depths[4], [5, 5], strides=(2, 2),
padding="SAME", trainable=is_training)
output = tf.nn.leaky_relu(tf.layers.batch_normalization(output, training=is_training))
# 第五层全链接层
with tf.variable_scope("d_fc1", reuse=reuse):
output = tf.layers.flatten(output)
disc_img = tf.layers.dense(output, 1, trainable=is_training)
return disc_img
编写保存结果的函数:
def plot_and_save(order, images):
'''
函数功能:绘制生成器的结果,并保存
:param order:
:param images:
:return:
'''
# 将一个batch_size的所有图像进行保存
batch_size = len(images)
n = np.int(np.sqrt(batch_size))
# 读取图像大小,并生成掩模canvas
image_size = np.shape(images)[2]
n_channel = np.shape(images)[3]
images = np.reshape(images, [-1, image_size, image_size, n_channel])
canvas = np.empty((n * image_size, n * image_size, image_channel))
# 为每个掩模赋值
for i in range(n):
for j in range(n):
canvas[i*image_size:(i+1)*image_size, j*image_size:(j+1)*image_size, :] = images[n*i+j].reshape(64, 64, 3)
# 绘制结果,并设置坐标轴
plt.figure(figsize=(8, 8))
plt.imshow(canvas, cmap="gray")
label = "Epoch: {0}".format(order+1)
plt.xlabel(label)
# 为每个文件命名
if type(order) is str:
file_name = order
else:
file_name = "face_gen" + str(order)
# 保存绘制的结果
plt.savefig(file_name)
print(os.getcwd())
print("Image saved in file: ", file_name)
plt.close()
准备好以上的函数,即可以开始编写训练过程。
4.编写训练过程
定义训练过程的函数:
# 定义训练过程
def training():
'''
函数功能:实现DCGAN的训练过程
'''
# 准备数据。这里输入根目录,以A的影像为例进行图像生成
data = prepare_data(input_dir, "A")
# 构建网络结构,这是程序的核心部分---------------------------------------------
x = tf.placeholder(tf.float32, shape=[None, data_length], name="Input_data")
x_img = tf.reshape(x, [-1] + data_shape)
z = tf.placeholder(tf.float32, shape=[None, z_dim], name="latent_var")
G = Generator(z, is_training=True, reuse=False)
D_fake_logits = Discriminator(G, is_training=True, reuse=False)
D_true_logits = Discriminator(x_img, is_training=True, reuse=True)
# 定义生成器的损失函数G_loss
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_fake_logits, labels=tf.ones_like(D_fake_logits)))
# 定义判别器的损失函数D_loss
D_loss_1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_true_logits, labels=tf.ones_like(D_true_logits)))
D_loss_2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
logits=D_fake_logits, labels=tf.zeros_like(D_fake_logits)))
D_loss = D_loss_1 + D_loss_2
# 定义方差
total_vars = tf.trainable_variables()
d_vars = [var for var in total_vars if "d_" in var.name]
g_vars = [var for var in total_vars if "g_" in var.name]
# 定义优化方式
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
g_optimization = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(G_loss, var_list=g_vars)
d_optimization = tf.train.AdamOptimizer(learning_rate=learning_rate,
beta1=beta1).minimize(D_loss, var_list=d_vars)
print("we successfully make the network")
# 网络模型构建结束------------------------------------------------------------
# 训练模型初始化
start_time = time.time() #计时
sess = tf.Session()
sess.run(tf.initialize_all_variables())
# 逐个epoch训练
for i in range(epoch):
total_batch = int(len(data)/batch_size)
d_value = 0
g_value = 0
# 逐个batch训练
for j in range(total_batch):
batch_xs = data[j*batch_size:j*batch_size + batch_size]
# 训练判别器
z_sampled1 = np.random.uniform(low=-1.0, high=1.0, size=[batch_size, z_dim])
Op_d, d_ = sess.run([d_optimization, D_loss], feed_dict={x: batch_xs, z: z_sampled1})
# 训练生成器
z_sampled2 = np.random.uniform(low=-1.0, high=1.0, size=[batch_size, z_dim])
Op_g, g_ = sess.run([g_optimization, G_loss], feed_dict={x: batch_xs, z: z_sampled2})
# 尝试生成影像并保存
images_generated = sess.run(G, feed_dict={z: z_sampled2})
d_value += d_/total_batch
g_value += g_/total_batch
plot_and_save(i, images_generated)
# 输出时间和损失函数loss
hour = int((time.time() - start_time)/3600)
min = int(((time.time() - start_time) - 3600*hour)/60)
sec = int((time.time() - start_time) - 3600*hour - 60*min)
print("Time: ", hour, "h", min, "min", sec, "sec", " Epoch: ",
i, "G_loss: ", g_value, "D_loss: ", d_value)
5.训练
整个训练过程非常简单:
if __name__ == "__main__":
training()
四、实验结果
实验暂时设置epoch=500,编写好*.py的结构之后,直接运行即可进行实验,用GPU(GTX1060 3G)运行约19分钟可跑完整个过程,训练的效果如下:
实验1个epoch的结果:
实验50个epoch的结果,此时实验结果已经有了颜色的变化:
实验100个epoch的结果,此时已经能够隐约看见人脸的轮廓:
实验150个epoch的结果,此时人脸的颜色更接近真实一些:
实验进行300个epoch的结果,此时已经又了眼睛和鼻子的轮廓:
实验进行500个epoch的结果,此时的生成图像已经比较清晰了,甚至可以看到牙齿:
五、分析
1. DCGA引入了CNN的思想,能够更好的处理彩色图像,但是训练的过程比较漫长
2. 整个网络的结构为:
from PIL import Image #导入Image
import ... #导入相关的库
# 设置超参数
is_training =...
...
# 定义读取数据函数
def prepare_data(input_dir, floder):...
# 定义生成器
def Generator(z, is_training, reuse):...
# 定义判别器
def Discriminator(x, is_training, reuse):...
# 定义绘制及保存函数
def plot_and_save(order, images):...
# 定义训练过程
def training():...
if __name__ == "__main__":
training()