【bzoj 1135】Lyz(Hall定理+线段树)

传送门biu~
Hall定理的内容是:二部图G中的两部分顶点组成的集合分别为X, Y;边集中有一组无公共点的边,一端恰好为组成X的所有点的充分必要条件是:X中的任意k个点至少与Y中的k个点相邻。
听起来像屁话一样
我们在一段区间[l,r]中,设x号脚的人数为F(x);有∑F(i)<=(r-l+d+1)*k (l<=i<=r)一定成立;将每个F(i)都减一个k,不等式可化为:∑(F(i)-k)<=d*k (l<=i<=r)。这个式子在任意一段区间中都一定成立。所以我们只需要求最大连续字段和是否大于d*k就可以了。
代码其实就是一棵线段树:

#include<bits/stdc++.h>
using namespace std;
int n,m,d;
long long k;
struct data{
    long long sum,maxl,maxr,w;
    data(){}
    data(long long a){sum=maxl=maxr=w=a;}
}tree[800005];
inline void maintain(int x){
    tree[x].sum=tree[x<<1].sum+tree[x<<1|1].sum;  
    tree[x].maxl=max(tree[x<<1].maxl,tree[x<<1].sum+tree[x<<1|1].maxl);  
    tree[x].maxr=max(tree[x<<1|1].maxr,tree[x<<1|1].sum+tree[x<<1].maxr);  
    tree[x].w=max(max(tree[x<<1].w,tree[x<<1|1].w),tree[x<<1|1].maxl+tree[x<<1].maxr);
}
void build(int num,int l,int r){
    if(l==r){
        tree[num]=data(-k);
        return;
    }
    int mid=l+r>>1;
    build(num<<1,l,mid);build(num<<1|1,mid+1,r);
    maintain(num);
}
void modify(int num,int l,int r,int x,long long val){
    if(l==r){
        tree[num]=data(tree[num].sum+val);
        return;
    }
    int mid=l+r>>1;
    if(x<=mid)   modify(num<<1,l,mid,x,val);
    else        modify(num<<1|1,mid+1,r,x,val);
    maintain(num);
}
int main(){
    scanf("%d%d%lld%d",&n,&m,&k,&d);
    build(1,1,n);
    while(m--){
        long long x,y;
        scanf("%lld%lld",&x,&y);
        modify(1,1,n,x,y);
        printf(tree[1].w<=k*d ? "TAK\n" : "NIE\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zP1nG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值