传送门biu~
Hall定理的内容是:二部图G中的两部分顶点组成的集合分别为X, Y;边集中有一组无公共点的边,一端恰好为组成X的所有点的充分必要条件是:X中的任意k个点至少与Y中的k个点相邻。
听起来像屁话一样
我们在一段区间[l,r]中,设x号脚的人数为F(x);有∑F(i)<=(r-l+d+1)*k (l<=i<=r)一定成立;将每个F(i)都减一个k,不等式可化为:∑(F(i)-k)<=d*k (l<=i<=r)。这个式子在任意一段区间中都一定成立。所以我们只需要求最大连续字段和是否大于d*k就可以了。
代码其实就是一棵线段树:
#include<bits/stdc++.h>
using namespace std;
int n,m,d;
long long k;
struct data{
long long sum,maxl,maxr,w;
data(){}
data(long long a){sum=maxl=maxr=w=a;}
}tree[800005];
inline void maintain(int x){
tree[x].sum=tree[x<<1].sum+tree[x<<1|1].sum;
tree[x].maxl=max(tree[x<<1].maxl,tree[x<<1].sum+tree[x<<1|1].maxl);
tree[x].maxr=max(tree[x<<1|1].maxr,tree[x<<1|1].sum+tree[x<<1].maxr);
tree[x].w=max(max(tree[x<<1].w,tree[x<<1|1].w),tree[x<<1|1].maxl+tree[x<<1].maxr);
}
void build(int num,int l,int r){
if(l==r){
tree[num]=data(-k);
return;
}
int mid=l+r>>1;
build(num<<1,l,mid);build(num<<1|1,mid+1,r);
maintain(num);
}
void modify(int num,int l,int r,int x,long long val){
if(l==r){
tree[num]=data(tree[num].sum+val);
return;
}
int mid=l+r>>1;
if(x<=mid) modify(num<<1,l,mid,x,val);
else modify(num<<1|1,mid+1,r,x,val);
maintain(num);
}
int main(){
scanf("%d%d%lld%d",&n,&m,&k,&d);
build(1,1,n);
while(m--){
long long x,y;
scanf("%lld%lld",&x,&y);
modify(1,1,n,x,y);
printf(tree[1].w<=k*d ? "TAK\n" : "NIE\n");
}
return 0;
}